2,516 research outputs found

    Nonlinear stability of source defects in the complex Ginzburg-Landau equation

    Full text link
    In an appropriate moving coordinate frame, source defects are time-periodic solutions to reaction-diffusion equations that are spatially asymptotic to spatially periodic wave trains whose group velocities point away from the core of the defect. In this paper, we rigorously establish nonlinear stability of spectrally stable source defects in the complex Ginzburg-Landau equation. Due to the outward transport at the far field, localized perturbations may lead to a highly non-localized response even on the linear level. To overcome this, we first investigate in detail the dynamics of the solution to the linearized equation. This allows us to determine an approximate solution that satisfies the full equation up to and including quadratic terms in the nonlinearity. This approximation utilizes the fact that the non-localized phase response, resulting from the embedded zero eigenvalues, can be captured, to leading order, by the nonlinear Burgers equation. The analysis is completed by obtaining detailed estimates for the resolvent kernel and pointwise estimates for the Green's function, which allow one to close a nonlinear iteration scheme.Comment: 53 pages, 5 figure

    Distributed Propulsion Aircraft with Aeroelastic Wing Shaping Control for Improved Aerodynamic Efficiency

    Get PDF
    This study presents an aeroelastic wing shaping control concept for distributed propulsion aircraft. By leveraging wing flexibility, wing-mounted distributed propulsion can be used to re-twist wing shapes in-flight to improve aerodynamic efficiency. A multidisciplinary approach is used to develop an aero-propulsive-elastic model of a highly flexible wing distributed propulsion transport aircraft. The conceptual model is used to evaluate the aerodynamic benefit of the distributed propulsion aircraft. The initial conceptual analysis shows that an improvement in the aerodynamic efficiency quantity of lift-to-drag ratio L/D is possible with the proposed aeroelastic wing shaping control for distributed propulsion aircraft. Two concepts are studied: single-generator configuration and dual-generator configuration with four propulsors per wing. The baseline aircraft model is NASA Generic Transport Model. A fan performance analysis is developed for propulsion sizing. Cruise performance analysis is conducted to evaluate the potential improvement in the cruise range for the configurations under study. A flutter analysis is performed to address the potential flutter issue as the propulsors are placed toward the wing tip which would cause a reduction in the wing natural frequencies. Flight control considerations are addressed in the context of the engine-out requirement, yaw and roll controls, and yaw damping augmentation using differential thrust

    Aeroelastic Wing Shaping Using Distributed Propulsion

    Get PDF
    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing

    Element similarity in high-dimensional materials representations

    Full text link
    The traditional display of elements in the periodic table is convenient for the study of chemistry and physics. However, the atomic number alone is insufficient for training statistical machine learning models to describe and extract composition-structure-property relationships. Here, we assess the similarity and correlations contained within high-dimensional local and distributed representations of the chemical elements, as implemented in an open-source Python package ElementEmbeddings. These include element vectors of up to 200 dimensions derived from known physical properties, crystal structure analysis, natural language processing, and deep learning models. A range of distance measures are compared and a clustering of elements into familiar groups is found using dimensionality reduction techniques. The cosine similarity is used to assess the utility of these metrics for crystal structure prediction, showing that they can outperform the traditional radius ratio rules for the structural classification of AB binary solids.Comment: 7 pages, 8 figure

    Selection of DNA nanoparticles with preferential binding to aggregated protein target.

    Get PDF
    High affinity and specificity are considered essential for affinity reagents and molecularly-targeted therapeutics, such as monoclonal antibodies. However, life's own molecular and cellular machinery consists of lower affinity, highly multivalent interactions that are metastable, but easily reversible or displaceable. With this inspiration, we have developed a DNA-based reagent platform that uses massive avidity to achieve stable, but reversible specific recognition of polyvalent targets. We have previously selected these DNA reagents, termed DeNAno, against various cells and now we demonstrate that DeNAno specific for protein targets can also be selected. DeNAno were selected against streptavidin-, rituximab- and bevacizumab-coated beads. Binding was stable for weeks and unaffected by the presence of soluble target proteins, yet readily competed by natural or synthetic ligands of the target proteins. Thus DeNAno particles are a novel biomolecular recognition agent whose orthogonal use of avidity over affinity results in uniquely stable yet reversible binding interactions

    Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    Get PDF
    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+

    MITOMAP: a human mitochondrial genome database—2004 update

    Get PDF
    MITOMAP (http://www.MITOMAP.org), a database for the human mitochondrial genome, has grown rapidly in data content over the past several years as interest in the role of mitochondrial DNA (mtDNA) variation in human origins, forensics, degenerative diseases, cancer and aging has increased dramatically. To accommodate this information explosion, MITOMAP has implemented a new relational database and an improved search engine, and all programs have been rewritten. System administrative changes have been made to improve security and efficiency, and to make MITOMAP compatible with a new automatic mtDNA sequence analyzer known as Mitomaster

    Proximal tubular cell–specific ablation of carnitine acetyltransferase causes tubular disease and secondary glomerulosclerosis

    Get PDF
    © 2019 by the American Diabetes Association. Proximal tubular epithelial cells are highly energy demanding. Their energy need is covered mostly from mitochondrial fatty acid oxidation. Whether derailments in fatty acid metabolism and mitochondrial dysfunction are forerunners of tubular damage has been suggested but is not entirely clear. Here we modeled mitochondrial overload by creating mice lacking the enzyme carnitine acetyltransferase (CrAT) in the proximal tubules, thus limiting a primary mechanism to export carbons under conditions of substrate excess. Mice developed tubular disease and, interestingly, secondary glomerulosclerosis. This was accompanied by increased levels of apoptosis regulator and fibrosis markers, increased oxidative stress, and abnormal profiles of acylcarnitines and organic acids suggesting profound impairments in all major forms of nutrient metabolism. When mice with CrAT deletion were fed a high-fat diet, kidney disease was more severe and developed faster. Primary proximal tubular cells isolated from the knockout mice displayed energy deficit and impaired respiration before the onset of pathology, suggesting mitochondrial respiratory abnormalities as a potential underlying mechanism. Our findings support the hypothesis that derailments of mitochondrial energy metabolism may be causative to chronic kidney disease. Our results also suggest that tubular injury may be a primary event followed by secondary glomerulosclerosis, raising the possibility that focusing on normalizing tubular cell mitochondrial function and energy balance could be an important preventative strategy
    • …
    corecore