2,412 research outputs found

    An isogeometric analysis for elliptic homogenization problems

    Full text link
    A novel and efficient approach which is based on the framework of isogeometric analysis for elliptic homogenization problems is proposed. These problems possess highly oscillating coefficients leading to extremely high computational expenses while using traditional finite element methods. The isogeometric analysis heterogeneous multiscale method (IGA-HMM) investigated in this paper is regarded as an alternative approach to the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) which is currently an effective framework to solve these problems. The method utilizes non-uniform rational B-splines (NURBS) in both macro and micro levels instead of standard Lagrange basis. Beside the ability to describe exactly the geometry, it tremendously facilitates high-order macroscopic/microscopic discretizations thanks to the flexibility of refinement and degree elevation with an arbitrary continuity level provided by NURBS basis functions. A priori error estimates of the discretization error coming from macro and micro meshes and optimal micro refinement strategies for macro/micro NURBS basis functions of arbitrary orders are derived. Numerical results show the excellent performance of the proposed method

    Sound-Dr: Reliable Sound Dataset and Baseline Artificial Intelligence System for Respiratory Illnesses

    Full text link
    As the burden of respiratory diseases continues to fall on society worldwide, this paper proposes a high-quality and reliable dataset of human sounds for studying respiratory illnesses, including pneumonia and COVID-19. It consists of coughing, mouth breathing, and nose breathing sounds together with metadata on related clinical characteristics. We also develop a proof-of-concept system for establishing baselines and benchmarking against multiple datasets, such as Coswara and COUGHVID. Our comprehensive experiments show that the Sound-Dr dataset has richer features, better performance, and is more robust to dataset shifts in various machine learning tasks. It is promising for a wide range of real-time applications on mobile devices. The proposed dataset and system will serve as practical tools to support healthcare professionals in diagnosing respiratory disorders. The dataset and code are publicly available here: https://github.com/ReML-AI/Sound-Dr/.Comment: 9 pages, PHMAP2023, PH

    Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach

    Full text link
    Using a quantum field theory renormalization group-like differential equation, we give a new proof of the recipe theorem for the Tutte polynomial for matroids. The solution of such an equation is in fact given by some appropriate characters of the Hopf algebra of isomorphic classes of matroids, characters which are then related to the Tutte polynomial for matroids. This Hopf algebraic approach also allows to prove, in a new way, a matroid Tutte polynomial convolution formula appearing in W. Kook {\it et. al., J. Comb. Series} {\bf B 76} (1999).Comment: 14 pages, 3 figure

    Isogeometric analysis for functionally graded microplates based on modified couple stress theory

    Get PDF
    Analysis of static bending, free vibration and buckling behaviours of functionally graded microplates is investigated in this study. The main idea is to use the isogeometric analysis in associated with novel four-variable refined plate theory and quasi-3D theory. More importantly, the modified couple stress theory with only one material length scale parameter is employed to effectively capture the size-dependent effects within the microplates. Meanwhile, the quasi-3D theory which is constructed from a novel seventh-order shear deformation refined plate theory with four unknowns is able to consider both shear deformations and thickness stretching effect without requiring shear correction factors. The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements. The convergence and verification show the validity and efficiency of this proposed computational approach in comparison with those existing in the literature. It is further applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates with various types of boundary conditions. A number of investigations are also conducted to illustrate the effects of the material length scale, material index, and length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table

    Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates

    Get PDF
    In this study, an efficient polygonal finite element method (PFEM) in combination with quadratic serendipity shape functions is proposed to study nonlinear static and dynamic responses of functionally graded (FG) plates with porosities. Two different porosity types including even and uneven distributions through the plate thickness are considered. The quadratic serendipity shape functions over arbitrary polygonal elements including triangular and quadrilateral ones, which are constructed based on a pairwise product of linear shape functions, are employed to interpolate the bending strains. Meanwhile, the shear strains are defined according to the Wachspress coordinates. By using the Timoshenko's beam to interpolate the assumption of the strain field along the edges of polygonal element, the shear locking phenomenon can be naturally eliminated. Furthermore, the C0–type higher-order shear deformation theory (C0–HSDT), in which two additional variables are included in the displacement field, significantly improves the accuracy of numerical results. The nonlinear equations of static and dynamic problems are solved by Newton–Raphson iterative procedure and by Newmark's integration scheme in association with the Picard methods, respectively. Through various numerical examples in which complex geometries and different boundary conditions are involved, the proposed approach yields more stable and accurate results than those generated using other existing approaches

    Congenital aneurysm of the muscular interventricular septum associated with bifascicular block

    Get PDF
    Isolated congenital aneurysm of the muscular interventricular septum is rare. We present a patient with congenital aneurysm of the basal muscular ventricular septum, who also develops conduction abnormalities with first-degree heart block, right bundle branch block, and left posterior fascicular block. The case details the natural history of the aneurysm over a 10-year period follow-up during which the patient remained asymptomatic with evidence of regression of the aneurysm. Given the aneurysm\u27s location close to the proximal right bundle and left posterior fascicle, we believe that the cause for the aneurysm also injured both fascicles resulting in bifascicular block. The diagnosis of bifascicular block was confirmed using the electrocardiogram-derived vectorcardiography loops. These conduction abnormalities have remained stable. The case illustrates the utility of vectorcardiography in diagnosing bundle branch conduction defects. The case also illustrates the importance of anatomical considerations when encountering congenital heart defects

    Unsupervised deep learning-based reconfigurable intelligent surface aided broadcasting communications in industrial IoTs

    Get PDF
    This paper presents a general system framework which lays the foundation for Reconfigurable Intelligent Surface (RIS)-enhanced broadcast communications in Industrial Internet of Things (IIoTs). In our system model, we consider multiple sensor clusters co-existing in a smart factory where the direct links between these clusters and a central base station (BS) is blocked completely. In this context, an RIS is utilized to reflect signals broadcast from BS toward cluster heads (CHs) which act as a representative of clusters, where BS only has access to the statistical distribution of the channel state information (CSI). An analytical upper bound of the total ergodic spectral efficiency and an approximation of outage probability are derived. Based on these analytical results, two algorithms are introduced to control the phase shifts at RIS, which are the Riemannian conjugate gradient (RCG) method and the deep neural network (DNN) method. While the RCG algorithm operates based on the conventional iterative method, the DNN technique relies on unsupervised deep learning. Our numerical results show that the both algorithms achieve satisfactory performance based on only statistical CSI. In addition, compared to the RCG scheme, using deep learning reduces the computational latency by more than 10 times with an almost identical total ergodic spectral efficiency achieved. These numerical results reveal that while using conventional RCG method may provide unsatisfactory latency, DNN technique shows much promise for enabling RIS in ultra reliable and low latency communications (URLLC) in the context of IIoTs
    • …
    corecore