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a b s t r a c t

A cell-based smoothed discrete shear gap method (CS-DSG3) for static and free vibration analyses of
Reissner–Mindlin shells is formulated by combining the cell-based strain smoothing technique with the
discrete shear gap method (DSG3) using three-node triangular elements. In the CS-DSG3, each triangular
element will be divided into three sub-triangles, and in each sub-triangle, the stabilized DSG3 is used to
compute the strains and to avoid the transverse shear locking. Then the strain smoothing technique on
whole of the triangular element is used to smooth the strains on these three sub-triangles. The CS-DSG3
hence not only overcomes the drawback of the DSG3 but also improves the accuracy as well as the
stability of the DSG3. The numerical examples demonstrated that the CS-DSG3 is free of shear locking
and achieves the high accuracy compared to other existing shell elements.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The numerical analysis of shell structures in large-scale indus-
trial problems has always been a challenge and receives continu-
ously strong interest [1–3]. In the past three decades, the finite
element method (FEM) has been used as a powerful numerical
tool to simulate behaviors of shell structures [4]. Compared with
four-node quadrilateral shell element [5–8], three-node triangular
shell element [9,10] is particularly attractive due to its simplicity,
automatic meshing and re-meshing in adaptive analysis. However,
the derivation of simple and effective three-node triangular shell
elements for analysis of general shell structures with complex
loading and boundary conditions is still a challenging research
topic. This paper hence focuses on developing such a simple and
effective three-node triangular shell element.

Based on the theories of formulation [1], shell elements can be
classified into three main groups: (1) degenerated shell elements
derived from the three-dimensional (3D) solid theory; (2) curved
shell elements based on general shell theory; and (3) flat shell
ll rights reserved.
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elements formulated by combining a plane elastic membrane ele-
ment and a plate bending element. Among these three groups, the
flat shell elements are rather popular due to simple formulation and
low computational cost, and hence the theory of flat shell elements
will be chosen to develop the triangular shell element in this paper.

Shell elements can also be classified according to the thin shell
elements and thick shell elements [1,2]. Thin shell elements are
based on the Kirchhoff–Love theory in which transverse shear
deformations are neglected, while thick shell elements are based
on the Reissner–Mindlin theory which includes transverse shear
deformations. The thin shell elements are limited only for thin
shells and require C1 continuity for the deflection field which
makes the formulation become more difficult. While the thick
shell elements, or Reissner–Mindlin shell elements, can be used for
both thin and thick shells and only require C0 continuity for the
deflection and rotation fields which make the formulation become
easier. However, three-node triangular Reissner–Mindlin shell
elements often suffer from two major drawbacks; (1) the so called
“shear locking” phenomena which pollutes the numerical results in
the thin limit; and (2) the overly stiff behavior which leads to poor
accuracy and low convergence of numerical solutions.

Shear locking is caused by parasitic shear deformation energy
which leads to an artificial additional stiffness as the shells becomes
progressively thinner. This drawback can be overcome by using some
different methods such as reduced integration [11] or assumed
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Fig. 2. Three-node triangular element.

Fig. 3. Three-node triangular element and local coordinates in the DSG3.
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natural strains (ANS) [12]. In the methods using reduced integration,
different integration rules are used for the bending strain energy and
shear strain energy. While in the methods using the ANS, the shear
strains are not computed directly from the derivatives of displace-
ments over the element but from additional interpolation based on
specific shape functions and the derivatives of displacements at only
some discrete points. The shell elements using reduced integration,
however, often give low accuracy and exhibit zero energy modes,
and hence stabilized techniques [5] are necessary to eliminate these
modes. While the elements using ANS often give more satisfied and
stable results. As a result, various shell elements have been devel-
oped following this trend [13,14].

Recently, Bletzinger et al. [15] proposed a three-node triangular
shell element DSG3 based on the Discrete Shear Gap method (DSG)
which can be classified as an ANS element. In the DSG3, the shear
strain is linear interpolated from the shear gaps of displacement along
the sides of the elements by using the standard element shape
functions. The DSG3 shell element can satisfy explicitly the kinematic
equation for the shear strains at discrete points and effectively
eliminates the parasitic shear strains. However, the element stiffness
matrix in the DSG3 still depends on the sequence of node numbers,
and hence the solution of DSG3 is influenced when the sequence of
node numbers changes, especially for the coarse and distortedmeshes.

The overly stiff behavior is usually observed in many Reissner–
Mindlin shell elements based on the compatible displacement-based
FEM models. The overly stiff behavior is even more severe when
three-node triangular shell elements are used. In order to reduce the
overly stiffness of the displacement-based FEM models, Liu et al.
[16–18] proposed a cell-based smoothed finite element method
(CS-FEM) which is a combination of the standard FEM and a strain
smoothing technique [19] used in meshfree methods. In the CS-FEM,
the domain discretization is still based on elements as in the FEM;
however the stiffness matrices are calculated based over smoothing
domains located inside the elements. The CS-FEM, however so far, has
been developed only for the 4-node quadrilateral elements [20–25]
and the improvement of accuracy of solutions compared to those of
the existing quadrilateral elements is still marginal.

This paper hence extends the CS-FEM for triangular elements
and for significant improvement of solutions of shell analysis. The
cell-based strain smoothing technique in the CS-FEM is combined
with the DSG3 [15] using three-node triangular elements to give a
so-called the cell-based smoothed discrete shear gap method
(CS-DSG3) for static and free vibration analyses of Reissner–
Mindlin shells. In the CS-DSG3, each triangular element will be
divided into three sub-triangles, and in each sub-triangle the
stabilized DSG3 [26] is used to compute the strains and to avoid
the transverse shear locking. Then the strain smoothing technique
on whole the triangular element is used to smooth the strains on
these three sub-triangles. The accuracy and reliability of the
proposed method is verified by comparing its numerical solutions
with those of others available numerical results.
Fig. 1. Reissner–Mindlin flat plate and positive directions o
2. Weakform and general FEM formulation of the
Reissner–Mindlin shell

The shell element is subjected to both membrane forces and
bending forces and hence the development of flat shell elements
should be a combination of a membrane element and a plate
bending element. In the following sections, we brief on the
weakform and general FEM formulation of Reissner–Mindlin shell
elements.

2.1. Weak form of the Reissner–Mindlin shell

Consider a shell subjected to both membrane forces and
bending forces. The middle (neutral) surface of plate is chosen as
the reference plane that occupies a domain Ω∈ℝ3 as shown in
Fig. 1. Let u, v, w be the displacements of the middle plane in the
f the displacement w and three rotations βx, βy and βz.



Fig. 4. Coordinate transformation in the triangular flat shell elements.

Fig. 5. Three sub-triangles (Δ1, Δ2 and Δ3) created from the triangle 1–2–3 in the
CS-DSG3 by connecting the central point O with three field nodes 1, 2 and 3.
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x, y, z directions, and βx, βy, βz are the rotations of the middle plane
around y-axis, x-axis, and z-axis respectively, with the positive
directions defined as shown in Fig. 1.

The unknown vector of six independent field variables at any
point in the problem domain of the Reissner–Mindlin shells can be
written as

u¼ u v w βx βy βz
h iT

ð1Þ

The membrane strain εm, the curvature of the shell κ and the
shear strains γ are defined, respectively, as

ðεmÞT ¼ ∂u
∂x

∂v
∂y

∂u
∂y þ ∂v

∂x

h i
; κT ¼ ∂βx

∂x
∂βy
∂y

∂βx
∂y þ ∂βy

∂x

h i
; γ¼

∂w
∂x þ βx
∂w
∂y þ βy

" #

ð2Þ
The standard Galerkin weakform of the static equilibrium

equations for the Reissner–Mindlin shell can now be written as
[1–3]Z
Ω
ðδεmÞTDmεm dΩþ

Z
Ω
δκTDbκ dΩþ

Z
Ω
δγTDsγ dΩ¼

Z
Ω
δuTb dΩ

ð3Þ
where b¼ 0 0 pðx; y; zÞ 0 0 0

� �T is the distributed load
applied on the shell. The matrices Dm, Db and Ds are, respectively,
the material matrices related to the membrane deformation,
bending deformation and shear deformation, and are given by

Dm ¼ Et
ð1−v2Þ

1 v 0
v 1 0
0 0 ð1−vÞ=2

2
64

3
75;

Db ¼ Et3

12ð1−v2Þ

1 v 0
v 1 0
0 0 ð1−vÞ=2

2
64

3
75; Ds ¼ kt

μ 0
0 μ

" #
ð4Þ

where E is Young's modulus; t is the thickness of plate; v is the
poisson constant; μ is the shear modulus and k¼5/6 is the shear
correction factor.

For the free vibration analysis of Reissner–Mindlin shells, the
standard Galerkin weakform can be derived from the dynamic
form of energy principle [1–3]Z
Ω
ðδεmÞTDmεm dΩþ

Z
Ω
δκTDbκ dΩþ

Z
Ω
δγTDsγ dΩþ

Z
Ω
δuTm €u dΩ¼ 0

ð5Þ
where m is the matrix containing the mass density of the material
ρ and thickness t as

m¼ diag½ρt; ρt; ρt; ρt3=12; ρt3=12;0� ð6Þ

2.2. General FEM formulation of Reissner–Mindlin flat shell elements

Now, discretize the bounded domain Ω into Ne finite elements
such that Ω¼ ∪Ne

e ¼ 1Ωe and Ωi∩Ωj ¼ ∅, i≠j, then the finite element

solution uh ¼ u v w βx βy βz
h iT

of a displacement model for

the Reissner–Mindlin shell is expressed as

uh ¼ ∑
Nn

I ¼ 1
NIðxÞI6|fflfflfflffl{zfflfflfflffl}

NI

dI ¼ ∑
Nn

I ¼ 1
NIdI ð7Þ

where I6 is the unit matrix of 6th rank; Nn is the total number of
nodes of problem domain discretized; NIðxÞ is the shape function

at the Ith node; dI ¼ uI vI wI βxI βyI βzI
h iT

is the displace-

ment vector of the nodal degrees of freedom of uh associated to
the Ith node.
The membrane, bending and shear strains can be then
expressed in the matrix forms as

εm ¼∑
I
RIdI ; κ¼∑

I
RIdI ; γs ¼∑

I
SIdI ð8Þ

where

RI ¼
NI;x 0 0 0 0 0
0 NI;y 0 0 0 0
NI;y NI;x 0 0 0 0

2
64

3
75 ð9Þ

BI ¼
0 0 0 NI;x 0 0
0 0 0 0 NI;y 0
0 0 0 NI;y NI;x 0

2
64

3
75 ð10Þ

SI ¼
0 0 NI;x NI 0 0
0 0 NI;y 0 NI 0

" #
ð11Þ

The discretized system of equations of the Reissner–Mindlin
shell using the FEM for static analysis then can be expressed as

Kd¼ F ð12Þ

where K is the global stiffness matrix given by

K¼
Z
Ω
RTDmR dΩþ

Z
Ω
BTDbB dΩþ

Z
Ω
STDsS dΩ ð13Þ

and F is the load vector defined as

F¼
Z
Ω
pΝ dΩþ fb ð14Þ

in which fb is the remaining part of F subjected to prescribed
boundary loads.

For free vibration analysis, we have

ðK−ω2MÞd¼ 0 ð15Þ
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where ω is the natural frequency and M is the global mass matrix
defined by

M¼
Z
Ω
NTmNT dΩ ð16Þ
3. Formulation of the three-node triangular flat shell element
CS-DSG3

In this section, the three-node triangular flat shell element
CS-DSG3 is formulated by combining the cell-based strain smooth-
ing technique [17,18] with the stabilized discrete shear gap
method (DSG3) using three-node triangular elements [15].

3.1. Brief on the DSG3 formulation

The formulation of the stabilized DSG3 [15] is based on the
concept “shear gap” of displacement along the sides of the
elements. In the DSG3, the shear strain is linear interpolated from
the shear gaps of displacement by using the standard element
shape functions. As a result, the operator matrix S related to shear
part is modified, and its entries are constant and computed from
the coordinates of nodes of elements. The DSG3 element is shear-
locking-free and has several superior properties as presented in
Ref [15]. In this paper, we just brief on the DSG3 formulation
which is necessary for the formulation of the CS-DSG3.

Using a mesh of triangular elements, the approximation

uh
e ¼ ½uh

e vhe wh
e βhex βhey βhez �T for a 3-node triangular shell
Fig. 6. Geometry of the pinched cylinder with diaphragms boundary conditions.
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Fig. 7. Two discretizations of one eighth of the Pinched cylinder with diaphragms bo
element Ωe shown in Fig. 2 can be written as

uh
e ¼ ∑

3

I ¼ 1
NIðxÞI6|fflfflfflffl{zfflfflfflffl}

NI

deI ¼ ∑
3

I ¼ 1
NIdeI ð17Þ

where deI ¼ ½uI vI wI βxI βyI βzI �T are the nodal degrees of

freedom of uh
e associated to the Ith node and NIðxÞ are linear shape

functions in a natural coordinate defined by

N1 ¼ 1−ξ−η; N2 ¼ ξ; N3 ¼ η ð18Þ
The membrane strain and curvatures of the deflection in the

element are then obtained by

εmh ¼ R1 R2 R3
� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

R

de ¼ Rde ð19Þ

κh ¼ B1 B2 B3
� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

B

de ¼ Bde ð20Þ

where de ¼ de1 de2 de3
� �T is the nodal displacement vector of

element; R and B contains the derivatives of the shape functions
that are constants in which

R1 ¼
b−c 0 0 0 0 0
0 d−a 0 0 0 0

d−a b−c 0 0 0 0

2
64

3
75; R2 ¼

c 0 0 0 0 0
0 −d 0 0 0 0
−d c 0 0 0 0

2
64

3
75;

R3 ¼
−b 0 0 0 0 0
0 a 0 0 0 0
a −b 0 0 0 0

2
64

3
75 ð21Þ

B1 ¼
0 0 0 b−c 0 0
0 0 0 0 d−a 0
0 0 0 d−a b−c 0

2
64

3
75; B2 ¼

0 0 0 c 0 0
0 0 0 0 −d 0
0 0 0 −d c 0

2
64

3
75;

B3 ¼
0 0 0 −b 0 0
0 0 0 0 a 0
0 0 0 a −b 0

2
64

3
75 ð22Þ

with a¼ x2−x1; b¼ y2−y1; c¼ y3−y1; d¼ x3−x1 as shown in Fig. 3,

and xi ¼ xi yi
h iT

, i¼ 1;2;3, are coordinates of three nodes in the

local coordinate system, respectively and Ae is the area of the
triangular element.

As reported in literatures on Reissner–Mindlin elements, the
shear locking often occurs when the thickness of shell becomes
small, where the pure bending dominates the shell deformation.
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00

undary conditions using (a) triangular elements and (b) quadrilateral elements.



Fig. 8. Convergence of the central deflection at point A of the Pinched cylinder
obtained using structured meshes and different methods.

Fig. 9. Convergence of the strain energy of the Pinched cylinder obtained using
structured meshes and different methods.

Fig. 10. Geometry of the Scordelis–Lo roof in which two curved edges are
supported by rigid diaphragms (u¼w¼0), and the other two edges are free.
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This is because the parasitic transverse shear strains are not
eliminated under pure bending conditions. In order to overcome
this conflict, Bletzinger et al. [15] proposed the discrete shear gap
method (DSG3) to alter the shear strain field. The altered shear
strains are in the form of

γh ¼ S1 S2 S3
� �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

S

de ¼ Sde ð23Þ

where

S1 ¼
1
2Ae

0 0 b−c Ae 0 0
0 0 d−a 0 Ae 0

" #
ð24Þ

S2 ¼
1
2Ae

0 0 c ac=2 bc=2 0
0 0 −d −ad=2 −bd=2 0

" #
ð25Þ

S3 ¼
1
2Ae

0 0 −b −bd=2 −bc=2 0
0 0 a ad=2 ac=2 0

" #
ð26Þ

Substituting matrices R, B, and S in Eqs. (19), (20) and (23),
respectively, into Eq. (13), the global stiffness matrix now becomes

KDSG3 ¼ ∑
Ne

e ¼ 1
KDSG3

e ð27Þ

where KDSG3
e is the element stiffness matrix of the DSG3 element

and is given by

KDSG3
e ¼ TT

Z
Ωe

RTDmR dΩþ
Z
Ωe

BTDbB dΩþ
Z
Ωe

STDsS dΩ
� �

T

¼ TT ðRTDmRAe þ BTDbB Ae þ STDsSAeÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ke

T

¼ TTkeT ð28Þ

in which ke is the element stiffness matrix computed in the local
coordinate system x̂ŷẑ, and T is the transformation matrix of
coordinates from the global coordinate system xyz to the local
coordinate system x̂ŷẑ as shown in Fig. 4.

It was suggested [26] that a stabilization term needs to be
added to the original DSG3 element to further improve the
accuracy of approximate solutions and to stabilize shear force
oscillations. Such a modification is achieved by simply replacing Ds

in Eq. (28) by D̂
s
as

D̂
s ¼ kt3

t2 þ αh2
e

1 0
0 1

� �
ð29Þ

in which he is the longest length of the edges of the element and
α is a positive constant [27].

From Eqs. (19), (20), (23) and (28), it is clear that the values of
element stiffness matrix at the drilling degree of freedom βz equal
zero which can cause the singularity in the global stiffness matrix
when all the elements meeting at a node are coplanar. To deal
with this issue, the null values of the stiffness corresponding to the
drilling degree of freedom are then replaced by approximate
values. This approximate value is taken to be equal to 10−3 times
the maximum diagonal value in the element stiffness matrix [25].

Also from Eqs. (19), (20), (23) and (28), it is seen that the
element stiffness matrix in the DSG3 depends on the sequence of
node numbers of elements, and hence the solution of DSG3 is
influenced when the sequence of node numbers of elements
changes, especially for the coarse and distorted meshes. The
CS-DSG3 is hence proposed to overcome this drawback and also
to improve the accuracy as well as the stability of the DSG3.
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Fig. 11. Two discretizations of a quarter of the Scordelis–Lo roof using (a) triangular elements and (b) quadrilateral elements.

Fig. 12. Convergence of the mid-side vertical displacement at point A of the
Scordelis–Lo roof obtained using structured meshes and different methods.

Fig. 13. Convergence of the strain energy of the Scordelis–Lo roof obtained using
structured meshes and different methods.

Fig. 14. Geometry of the partly clamped hyperbolic paraboloid shell structure
in which one side is clamped and three other edges are free.
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3.2. Formulation of the flat shell element CS-DSG3

In the CS-DSG3, each triangular element is divided into three
sub-triangles by connecting the central point of the element to
three field nodes, and the displacement vector at the central point
is assumed to be the simple average of three displacement vectors
of three field nodes. In each sub-triangles, the stabilized DSG3 is
used to compute the strains and also to avoid the transverse shear
locking. Then the strain smoothing technique on whole of the
triangular element is used to smooth the strains on these three
sub-triangles. The formulation of CS-DSG3 is presented in detail as
follows:

Consider a typical triangular element Ωe as shown in Fig. 5.
We first divide the element into 3 sub-triangles Δ1, Δ2 and Δ3 such
as Ωe ¼ ∪3i ¼ 1Δi and Δi∩Δj ¼∅, i≠j, by simply connecting the central
point O of the triangle with 3 field nodes as shown in Fig. 5.

In the CS-DSG3, we assume that the displacement vector deO at
the central point O is the simple average of three displacement
vectors de1, de2 and de3 of three field nodes

deO ¼ ðde1 þ de2 þ de3Þ=3 ð30Þ

On the first sub-triangle Δ1(triangle O-1–2), we now construct the

linear approximation uΔ1
e ¼ uΔ1

e vΔ1
e wΔ1

e βΔ1
ex βΔ1

ey βΔ1
ez

h iT
by

uΔ1
e ¼NΔ1

1 ðxÞdO þ NΔ1
2 ðxÞd1 þ NΔ1

3 ðxÞd2 ¼NΔ1
e ðxÞdΔ1

e ð31Þ

where dΔ1
e ¼ deO de1 de2

� �T is the vector of nodal degrees of

freedom of the sub-triangle Δ1 and NΔ1
e ¼ NΔ1

1 NΔ1
2 NΔ1

3

h i
is the

vector containing the linear shape functions in a natural coordinate
defined by Eq. (18).

The membrane strain εmΔ1
e , the curvatures of the deflection κΔ1

e

and the altered shear strains γΔ1
e in the sub-triangle Δ1 are then

obtained by

εmΔ1
e ¼ rΔ1

1 rΔ1
2 rΔ1

3

h i
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

r
Δ1
e

dO

d1

d2

2
64

3
75¼ rΔ1

e dΔ1
e ð32Þ
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Fig. 15. Two discretizations of the partly clamped hyperbolic paraboloid shell structure using (a) triangular elements and (b) quadrilateral elements.

Fig. 16. Convergence of the vertical displacement at point B (x¼L/2, y¼0) using
structured meshes and different methods.

Fig. 17. Convergence of the strain energy of the partly clamped hyperbolic
paraboloid shell structure obtained using structured meshes and different
methods.

Fig. 18. Geometry of the hemispherical shell with an 181 hole.
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κΔ1
e ¼ bΔ1

1 bΔ1
2 bΔ1

3

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b
Δ1
e

deO

de1

de2

2
64

3
75¼ bΔ1

e dΔ1
e ð33Þ
γΔ1
e ¼ sΔ1

1 sΔ1
2 sΔ1

3

h i
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

s
Δ1
e

deO

de1

de2

2
64

3
75¼ sΔ1

e dΔ1
e ð34Þ

where rΔ1
e , bΔ1

e and sΔ1
e are, respectively, computed similarly as the

matrices R, B and S of the DSG3 by Eqs. (19), (20) and (23), but
with two following changes: (1) the coordinates of three node

xi ¼ xi yi
h iT

, i¼ 1;2;3 are replaced by xO, x1 and x2, respectively;

and (2) the area Ae is replaced by the area AΔ1 of sub-triangle Δ1.
Substituting deO in Eq. (30) into Eqs. (32)–(34), and then

rearranging we obtain

εmΔ1
e ¼ 1

3 r
Δ1
1 þ rΔ1

2
1
3 r

Δ1
1 þ rΔ1

3
1
3 r

Δ1
1

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R
Δ1
e

de1

de2

de3

2
64

3
75¼ RΔ1

e de ð35Þ

κΔ1
e ¼ 1

3b
Δ1
1 þ bΔ1

2
1
3b

Δ1
1 þ bΔ1

3
1
3b

Δ1
1

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B
Δ1
e

de1

de2

de3

2
64

3
75¼ BΔ1

e de ð36Þ

γΔ1
e ¼ 1

3 s
Δ1
1 þ sΔ1

2
1
3 s

Δ1
1 þ sΔ1

3
1
3 s

Δ1
1

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S
Δ1
e

de1

de2

de3

2
64

3
75¼ SΔ1

e de ð37Þ

Similarly, by using the cyclic permutation, we easily obtain the
membrane strain εmΔ2

e ; εmΔ3
e , the curvatures of the deflection



Fig. 20. Convergence of the radial deflection coincident at point load of the
hemispherical shell with an 181 hole using structured meshes and different
methods.

Fig. 21. Geometry of the cylindrical shell with clamped at one edge and free at
the other.
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κΔ2
e ,κΔ3

e and the altered shear strains γΔ2
e ,γΔ3

e for the second sub-
triangle Δ2 and third sub-triangle Δ3, respectively.

Now, applying the cell-based strain smoothing operation in the
CS-FEM [17,18], the constant membrane strains εmΔ1

e , εmΔ2
e , εmΔ3

e , the
constant bending strains κΔ1

e , κΔ2
e , κΔ3

e and constant shear strains
γΔ1
e , γΔ2

e , γΔ3
e are, respectively, used to create a smoothed element

membrane strain ~εme , a smoothed element bending strain ~κe and a
smoothed element shear strain ~γe on the triangular element Ωe,
such as

~εme ¼
Z
Ωe

εmΦeðxÞdΩ¼ ∑
3

i ¼ 1
εmΔi
e

Z
Δi

ΦeðxÞdΩ ð38Þ

~κe ¼
Z
Ωe

κhΦeðxÞdΩ¼ ∑
3

i ¼ 1
κΔi
e

Z
Δi

ΦeðxÞdΩ ð39Þ

~γe ¼
Z
Ωe

γhΦeðxÞdΩ¼ ∑
3

i ¼ 1
γΔi
e

Z
Δi

ΦeðxÞdΩ ð40Þ

where ΦeðxÞ is a given smoothing function that satisfies at least
unity property

R
Ωe
ΦeðxÞdΩ¼ 1. In this paper, we use the Heaviside-

type constant smoothing function

ΦeðxÞ ¼
1=Ae x∈Ωe

0 x∉Ωe

(
ð41Þ

where Ae is the area of the triangular element, the smoothed
element membrane strain ~εme , the smoothed element bending
strain ~κe and the smoothed element shear strain ~γe in Eqs. (38)–
(40) become

~εme ¼ ~Rede; ~κe ¼ ~Βede; ~γe ¼ ~Sede ð42Þ

where ~Re, ~Βe and ~Se are, respectively, the smoothed membrane
gradient matrix, smoothed bending gradient matrix and smoothed
shear strain gradient matrix given by

~Re ¼ 1
Ae

∑
3

i ¼ 1
AΔiR

Δi
e ; ~Βe ¼ 1

Ae
∑
3

i ¼ 1
AΔiΒ

Δi
e ;

~Se ¼ 1
Ae

∑
3

i ¼ 1
AΔiS

Δi
e ð43Þ

Therefore the global stiffness matrix of the CS-DSG3 are
assembled by

~K ¼ ∑
Ne

e ¼ 1

~Ke ð44Þ
0
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Fig. 19. Two discretizations of the hemispherical shell with an 181 hole using (a) triangular elements and (b) quadrilateral elements.
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where ~Ke is the smoothed element stiffness given by

~Ke ¼ TT
Z
Ωe

~R
T
Dm ~R dΩþ

Z
Ωe

~B
T
Db ~B dΩþ

Z
Ωe

~S
T
Ds ~S dΩ

� �
T

¼ TT ð ~RT
Dm ~R Ae þ ~B

T
Db ~B Ae þ ~S

T
Ds ~S AeÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~ke

T

¼ TT ~keT ð45Þ
in which ~ke is the smoothed element stiffness matrix computed in
the local coordinate system.

From Eqs. (43) and (45), it is seen that the element stiffness
matrix in the CS-DSG3 does not depend on the sequence of node
numbers, and hence the solution of CS-DSG3 is always stable
when the sequence of node numbers changes. Also note that the
rank of the CS-DSG3 element is similar to that of the DSG3
element and hence the kinematic stability of the CS-DSG3 element
is ensured. Only six eigenvalues are always zero (corresponding to
the rigid body modes of the element) for various element shapes
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Fig. 22. Two discretizations of the cylindrical shell using (

Table 1

Convergence of eight lowest frequency parameters λ¼ 100ωR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρð1−ν2Þ=E

p
of the CFFF cy

Meshing Method Mode

1 2 3

8�8 DKT–CST 1.4718 1.4891 2.3898
MITC4 1.339 1.3442 2.2058
MIN3–CST 1.8052 1.8111 2.3933
DSG3–CST 1.5426 1.5598 2.3898
CS-DSG3 1.4555 1.4754 2.3898

12�12 DKT–CST 1.2529 1.2562 2.3032
MITC4 1.1875 1.1891 2.2128
MIN3–CST 2.0066 2.0141 2.3121
DSG3–CST 1.2811 1.2847 2.3032
CS-DSG3 1.2493 1.2531 2.3032

16�16 DKT–CST 1.1758 1.1768 2.2692
MITC4 1.1377 1.1382 2.2157
MIN3–CST 2.2858 2.2865 2.3986
DSG3–CST 1.191 1.1921 2.2692
CS-DSG3 1.1747 1.1759 2.2692

20�20 DKT–CST 1.1396 1.14 2.2523
MITC4 1.1148 1.115 2.217
MIN3–CST 2.279 2.2792 2.8451
DSG3–CST 1.1492 1.1496 2.2525
CS-DSG3 1.1392 1.1397 2.2524

Leissa [35] 1.1094 2.4578
RSQ20 [8] 1.0915 1.0915 2.2366
RSQ24 [8] 1.1006 1.1006 2.2374
of very thin and thick shells, and the CS-DSG3 element has no
spurious zero-energy modes as shown in various numerical
examples in Section 4.
4. Numerical results

In this section, various numerical examples are performed to
show the accuracy and stability of the proposed CS-DSG3 com-
pared to the analysis solutions. The stabilized parameter α in
Eq. (29) in the CS-DSG3 is fixed at 0.1 for both static analysis and
free vibration analysis. For comparison, several others flat shell
elements such as DSG3 [15], DKT [28], MIN3 [29] and MITC4
[13,30] have also been implemented in our package. The mem-
brane element used here in others triangular flat shell elements is
the constant strain triangular element (CST), and hence three
triangular flat shell elements used for comparion are abbreviated
as DSG3–CST, DKT–CST and MIN3–CST, respectively.
10
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a) triangular elements and (b) quadrilateral elements.

lindrical shell.

4 5 6 7 8

2.4023 3.0964 3.1739 6.1941 6.5235
2.2137 4.1676 4.2499 5.3046 5.3752
2.4063 3.6943 3.8189 6.7842 6.8582
2.4032 4.2348 4.3217 6.7091 6.8252
2.402 2.9621 3.0064 5.7479 5.9713
2.3059 2.6487 2.6616 4.5491 4.5781
2.2144 2.9256 2.9361 4.0134 4.0247
2.3147 4.0048 4.0436 5.5557 5.5561
2.306 2.9888 2.9977 4.7858 4.8139
2.3059 2.6207 2.6281 4.5391 4.5708
2.2701 2.4689 2.4727 3.8839 3.8928
2.2162 2.5984 2.6012 3.586 3.5903
2.4033 4.666 4.6837 5.4642 5.4708
2.2702 2.6317 2.6339 4.0026 4.0119
2.2701 2.4632 2.4653 3.8827 3.8926
2.2527 2.3829 2.3844 3.5928 3.5963
2.2172 2.4592 2.4603 3.4034 3.4053
2.8481 5.4428 5.4522 5.5335 5.535
2.2528 2.4789 2.4797 3.6647 3.6685
2.2527 2.3829 2.3837 3.5926 3.5965

2.2366
2.2773
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4.1. Static analysis

4.1.1. Cylindrical shell under central point load—pinched cylinder
with diaphragm

We now consider a pinched cylindrical shell supported at each
end by rigid diaphragm and subjected to a point load P¼1 at the
center of the cylindrical surface as shown in Fig. 6. The geometric
dimensions of the pinched cylinder are given by the length L¼600,
the radius R¼300 and the thickness t¼3. The material properties
are given by Poisson's ratio Ωe and Young's modulus E¼3�106.
Due to its symmetry, only one eighth of the cylinder is modeled.
Six uniform discretizations N�N of shell with N¼8, 12, 16, 20, 24
and 28 are used and two discretizations 16�16 using triangular
and quadrilateral elements are plotted in Fig. 7.

Fig. 8 shows the convergence of the central deflection at point
A obtained using structured meshes and different methods.
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Fig. 23. Shape of eight lowest eigenmodes of the cylindrical shell with mesh 16�16 by
and (f) Mode 8.
The reference solution obtained from [31] is 1.8248�10−5. It is
seen that with the same degree of freedoms (DOFs), the results of
the CS-DSG3 are better than those of almost methods and only
worse than those of the DKT–CST in some coarse meshes. Also note
that, the CS-DSG3 shows the best accuracy for the fine meshes.

Fig. 9 shows the convergence of the strain energy obtained
using structured meshes and different methods. The results again
confirm the comments obtained for the central deflection at point
A shown in Fig. 8.

4.1.2. Cylindrical shell under uniform load—Scordelis–Lo roof
We now consider a cylindrical shell roof known as the Scordelis–

Lo roof in which two curved edges are supported by rigid
diaphragms (u¼w¼0), and the other two edges are free as shown
in Fig. 10. The Scordelis–Lo roof is subjected to the self-weight q¼90
per unit area in the z-direction and has the geometric dimensions
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the CS-DSG3. (a) Modes 1–2; (b) Modes 3–4; (c) Mode 5; (d) Mode 6; (e) Mode 7
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given by the length L¼50, the radius R¼25 and the thickness
t¼0.25. The material properties are given by Poisson's ratio v¼0.0
and Young's modulus E¼4.32�108. This example was first modeled
by Scordelis and Lo [32] who gave the mid-side vertical displace-
ment at point A is 0.3086. However, many finite elements converge
to a slightly smaller value, and hence Macneal and Harder [33]
suggested to use the value of 0.3024 for testing. Due to its
symmetry, only a quarter of the cylinder shell is modeled. Five
uniform discretizations N�N of shell with N¼4, 8, 10, 12 and 16 are
used and two discretizations 16�16 using triangular and quad-
rilateral elements are plotted in Fig. 11.

Fig. 12 shows the convergence of the mid-side vertical dis-
placement at point A obtained using structured meshes and
different methods. It is seen that with the same degree of free-
doms (DOFs), the results of the CS-DSG3 are better than those of
almost methods and only worse than those of the MITC4 in some
coarse meshes. Also note that, the CS-DSG3 shows the fastest
convergence to the reference solution for the fine meshes.

Fig. 13 shows the convergence of the strain energy obtained
using structured meshes and different methods. The results again
confirm the comments obtained the mid-side vertical displace-
ment at point A shown in Fig. 12.
Fig. 24. Geometry of the hemispherical panel with cla
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Fig. 25. Two discretizations of the hemispherical panel using
4.1.3. Partly clamped hyperbolic paraboloid
We now consider a hyperbolic paraboloid shell structure with

the geometric equation z¼ x2−y2, x∈½−0:5;0:5� and y∈½−0:5;0:5� as
shown in Fig. 14. The hyperbolic paraboloid shell structure is
clamped along one side and subjected to the self-weight
q¼8000 kg/m3 in the z-direction. The geometric dimensions are
given by the length L¼1 m and the thickness t¼0.001 m. The
material properties are given by Poisson's ratio v¼ 0:3 and Young's
modulus E¼2�1011 N/m2. The reference values [34] for the total
strain energy is 1.1013�10−2 Nm2 and the vertical displacement at
point B (x¼L/2, y¼0) is −6.3941�10−3 m. Four uniform discreti-
zations N�N of shell with N¼4, 8, 16 and 24 are used and two
discretizations 16�16 using triangular and quadrilateral elements
are plotted in Fig. 15.

Fig. 16 shows the convergence of the vertical displacement at
point B (x¼L/2, y¼0) obtained using structured meshes and
different methods. It is seen that the CS-DSG3 shows remarkably
excellent performance compared to the other methods.

Fig. 17 shows the convergence of the strain energy obtained
using structured meshes and different methods. The results again
confirm the comments obtained the vertical displacement at point
B (x¼L/2, y¼0) shown in Fig. 16.
mped at two edges and free at two other edges.

1

0

1 0 0.2 0.4 0.6 0.8 1

0

.2

.4

.6

.8

1

(a) triangular elements and (b) quadrilateral elements.
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4.1.4. Hemispherical shell
We now consider a hemispherical shell with an 181 hole

subjected to two point loads F¼1 N antisymmetrically as shown
in Fig. 18. This benchmark problem aims to test the ability of an
element to handle rigid body rotations about normals to the shell
surface. The geometric dimensions are given by the radius
R¼10 m and the thickness t¼0.04 m. The material properties
are given by Poisson's ratio v¼0.3 and Young's modulus
E¼6.825�107 N/m2. The reference values [33] for the radial
deflection coincident at point load is 0.0924 m. Five uniform
discretizations N�N of shell with N¼4, 8, 10, 12 and 16 are used
and two discretizations 12�12 using triangular and quadrilateral
elements are plotted in Fig. 19.

Fig. 20 shows the convergence of the radial deflection coin-
cident at point load obtained using structured meshes and
different methods. It is seen that the CS-DSG3 shows excellent
performance compared to the other methods.
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Fig. 26. Eight lowest frequencies of the hemispherical panel discretized by
a uniform mesh 12�12.
4.2. Free vibration analysis

In this section, we will examine the accuracy of the CS-DSG3
element in solving for natural frequencies of various shell struc-
tures. The shell may have different boundary conditions such as
free (F), simply (S) supported or clamped (C) edges.

4.2.1. A cylindrical shell with clamped-free ends (CFFF)
We now analyze the natural frequencies of a cylindrical shell

with clamped at one edge and free at the other as shown in Fig. 21.
The geometric and material properties are given by length to
radius ratios L/R¼10, radius to thickness ratios R/t¼100, elastic
modulus E¼2.1�1011 N/m2, Poisson ratio ν¼0.3 and mass density
ρ¼7800 kg/m3. Four uniform discretizations N�N of shell with
N¼8, 12, 16 and 20 are used and two discretizations 12�12 using
triangular and quadrilateral elements are plotted in Fig. 22.
The natural frequency parameters λ¼ 100ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρð1−ν2Þ=E

p
is used

to illustrate the numerical results.
Table 2
Convergence of eight lowest frequencies of the hemispherical panel CCFF.

Meshing Method Mode

1 2 3

8�8 DKT–CST 359.3 496.4 777.5
MITC4 332.5 471.3 729
MIN3–CST 771 890.7 1273.8
DSG3–CST 288.8 366.6 663.9
CS-DSG3 346.3 472.4 750.6

12�12 DKT–CST 350.6 487.1 755.1
MITC4 328.9 464.5 715.7
MIN3–CST 809.4 931.3 1329.9
DSG3–CST 287.5 374.4 655.8
CS-DSG3 338.3 467 731.6

16�16 DKT–CST 346.4 483.2 745
MITC4 328 462.6 711.5
MIN3–CST 831.2 954.8 1359.6
DSG3–CST 286.2 377.3 652.1
CS-DSG3 334.4 464.1 722.4

20�20 DKT–CST 344.2 481.2 739.7
MITC4 327.7 461.8 709.7
MIN3–CST 844.6 969.8 1376
DSG3–CST 285.4 378.9 650.2
CS-DSG3 332.2 462.4 717.3

Abaqus 326.94 459.01 706.98
Ansys 328.48 460.89 710.52
Nastran 328.69 460.93 711.09
Straus 327.28 458.54 706.64
GDQ 327.39 458.58 705.71
Table 1 shows eight lowest modes by the CS-DSG3 and various
methods. The results are also compared with the analytical
solution by Leissa [35] and numerical results of the RSQ20 and
RSQ24 quadrilateral elements [8]. It is observed that the results of
CS-DSG3 converge well to the reference solution by Leissa [35] and
reference numeral results of RSQ20 and RSQ24 [8]. It is also seen
that the CS-DSG3 is better than the DSG3–CST, MIN3–CST, DKT–
CST and a good competitor to the MITC4. Fig. 23 plots the shape of
eight lowest eigenmodes of the cylindrical shell with mesh 16�16
by the CS-DSG3.

4.2.2. Hemispherical panel CCFF
Let us now consider a hemispherical panel as shown in Fig. 24

with radius R¼1 m, thickness t¼0.1 m, φ0¼301, φ1¼901, ψ¼1201.
4 5 6 7 8

1009 1178 1465.2 1506.5 1671.3
950.7 1102.9 1392.7 1420.6 1520.9

1558.9 1810 1932.6 1980.5 2043.1
808.5 993.6 1059.2 1298.8 1344.9
983.4 1136.4 1378.1 1450.1 1585.1
960.8 1130.8 1398.7 1451.3 1566.9
917.3 1073.4 1334.5 1367 1447.4

1586 1817.2 1906.1 2004 2116.4
802.7 963.3 1057.2 1207.9 1296.6
933.0.3 1089.6 1346.1 1368.2 1475.6
942 1113.3 1368.4 1429.8 1529.5
906.1 1064.4 1311.5 1349.5 1424.1
1612.1 1851.9 1911.7 2039.4 2175.1
797.8 951.4 1061.1 1177.6 1257.1
913.7 1071.8 1329.1 1331.4 1436.2
932.8 1105 1352.6 1419.3 1512.8
901.1 1060.7 1300.7 1342 1414.2

1630.8 1882.5 1925.1 2068.3 2219.4
795.1 946 1063.8 1164.1 1237.6
904.1 1063.2 1309.2 1323.1 1417.6
884.09 1047.6 1270.8 1309.2 1383.7
893.51 1056.1 1285.2 1328 1404
892.71 1055.8 1282.4 1325.9 1401.9
888.86 1049.5 1278.9 1313.9 1395.5
885.18 1046.6 1270.7 1305.1 1382.8
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The material parameters are given by Young's modulus E¼2.1�
1011 Pa, Poisson's ratio ν¼0.3, mass density ρ¼7800 kg/m3. Four
uniform discretizations N�N of shell with N¼8, 12, 16 and 20 are
used and two discretizations 12�12 using triangular and quad-
rilateral elements are plotted in Fig. 25.

Eight lowest modes by the CS-DSG3 and various methods are
shown in Table 2 and plotted in Fig. 26 with mesh 12�12. The results
are also compared with the numerical solutions of the Generalized
Differential Quadrature (GDQ) method [36] and the reference results
derived from commercial software packages such as Abaqus, Ansys,
Nastran, Straus found in Ref [36]. It is again observed that the results of
CS-DSG3 converge well to the reference solutions of the GDQ [36] and
of commercial software packages such as Abaqus, Ansys, Nastran,
Straus [36]. It is also seen that the CS-DSG3 is better than the DSG3–
CST, MIN3–CST, DKT–CST and a good competitor to the MITC4. Fig. 27
plots the shape of six lowest eigenmodes of the hemispherical panel
with mesh 16�16 by the CS-DSG3.
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Fig. 27. Shape of six lowest eigenmodes of the hemispherical panel with mesh 16�1
and (f) Mode 6.
5. Conclusions

A cell-based smoothed discrete shear gap method (CS-DSG3)
for static and free vibration analyses of Reissner–Mindlin shells is
formulated by combining the cell-based strain smoothing techni-
que with the discrete shear gap method (DSG3) using three-node
triangular elements. In the CS-DSG3, each triangular element will
be divided into three sub-triangles, and in each sub-triangle, the
stabilized DSG3 is used to compute the strains and to avoid the
transverse shear locking. Then the strain smoothing technique on
whole of the triangular element is used to smooth the strains on
these three sub-triangles. The CS-DSG3 hence not only overcomes
the drawback of the DSG3 which depends on the sequence of node
numbers of elements, but also improves the accuracy as well as
the stability of the DSG3. The numerical examples demonstrated
that the CS-DSG3 is free of shear locking and achieves the high
accuracy compared to others existing flat shell elements.
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