85 research outputs found

    ANTIINFLAMMATORY PROPERTIES OF DICHLOROMETHANE: METHANOLIC LEAF EXTRACTS OF CAESALPINIA VOLKENSII AND MAYTENUS OBSCURA IN ANIMAL MODELS

    Get PDF
    Objective: Inflammation is the reaction to injury of the living tissues. Conventional medication of inflammation is expensive and arguably associated with various severe adverse effects hence the need to develop herbal agents that are effective as alternative. Caesalpinia volkensii and Maytenus obscura are plants that grow in Mbeere County of Eastern region of Kenya. This study was designed to evaluate the anti-inflammatory activity of C. volkensii and M. obscura plants. Methods: Experimental animals were divided in to four groups; normal group, diseased negative control group, diseased reference group and diseased experimental groups. Inflammation was inducted into the mice using carrageenan. The experimental groups were treated with leaf extracts of the plants at concentration of 50 mg/kg, 100 mg/kg and 150 mg/kg. Anti-inflammatory activities in rats were compared with diclofenac (15 mg/kg) as the standard conventional drug. Results: The leaf extracts of C. volkensii reduced the paw edema by between 6.50%-13.42% while the extracts of M. obscura reduced it by between 4.94%-22.36%. Diclofenac reduced the paw edema by between 4.11%-10.47%. Conclusion: The phytochemical screening results showed that the extracts of C. volkensii had flavonoids, steroids and phenolics while the leaf extracts M. obscura had phenolics, terpenoids and saponins. Flavonoids, saponins and phenolics have been associated with anti-inflammatory activities. Therefore, the study has established that the DCM: methanolic leaf extracts of Caesalpinia volkensii and Maytenus obscura are effective in management of inflammation

    Sequencing effort dictates gene discovery in marine microbial metagenomes

    Get PDF
    © 2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. Massive metagenomic sequencing combined with gene prediction methods were previously used to compile the gene catalogue of the ocean and host-associated microbes. Global expeditions conducted over the past 15 years have sampled the ocean to build a catalogue of genes from pelagic microbes. Here we undertook a large sequencing effort of a perturbed Red Sea plankton community to uncover that the rate of gene discovery increases continuously with sequencing effort, with no indication that the retrieved 2.83 million non-redundant (complete) genes predicted from the experiment represented a nearly complete inventory of the genes present in the sampled community (i.e., no evidence of saturation). The underlying reason is the Pareto-like distribution of the abundance of genes in the plankton community, resulting in a very long tail of millions of genes present at remarkably low abundances, which can only be retrieved through massive sequencing. Microbial metagenomic projects retrieve a variable number of unique genes per Tera base-pair (Tbp), with a median value of 14.7 million unique genes per Tbp sequenced across projects. The increase in the rate of gene discovery in microbial metagenomes with sequencing effort implies that there is ample room for new gene discovery in further ocean and holobiont sequencing studies

    Comparative Genomics of the Genus Methanohalophilus, Including a Newly Isolated Strain From Kebrit Deep in the Red Sea

    Get PDF
    Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, but are under-represented in culture collections. In this study, we describe a novel Methanohalophilus strain that was isolated from the sulfide-rich brine-seawater interface of Kebrit Deep in the Red Sea. Based on physiological and phylogenomic features, strain RSK, which is the first methanogenic archaeon to be isolated from a deep hypersaline anoxic brine lake of the Red Sea, represents a novel species of this genus. In order to compare the genetic traits underpinning the adaptations of this genus in diverse hypersaline environments, we sequenced the genome of strain RSK and compared it with genomes of previously isolated and well characterized species in this genus (Methanohalophilus mahii, Methanohalophilus halophilus, Methanohalophilus portucalensis, and Methanohalophilus euhalobius). These analyses revealed a highly conserved genomic core of greater than 93% of annotated genes (1490 genes) containing pathways for methylotrophic methanogenesis, osmoprotection through salt-out strategy, and oxidative stress response, among others. Despite the high degree of genomic conservation, species-specific differences in sulfur and glycogen metabolisms, viral resistance, amino acid, and peptide uptake machineries were also evident. Thus, while Methanohalophilus species are found in diverse extreme environments, each genotype also possesses adaptive traits that are likely relevant in their respective hypersaline habitats

    Development and validation of a diagnostic aid for convulsive epilepsy in sub-Saharan Africa: a retrospective case-control study

    Get PDF
    Background: Identification of convulsive epilepsy in sub-Saharan Africa relies on access to resources that are often unavailable. Infrastructure and resource requirements can further complicate case verification. Using machine-learning techniques, we have developed and tested a region-specific questionnaire panel and predictive model to identify people who have had a convulsive seizure. These findings have been implemented into a free app for health-care workers in Kenya, Uganda, Ghana, Tanzania, and South Africa. Methods: In this retrospective case-control study, we used data from the Studies of the Epidemiology of Epilepsy in Demographic Sites in Kenya, Uganda, Ghana, Tanzania, and South Africa. We randomly split these individuals using a 7:3 ratio into a training dataset and a validation dataset. We used information gain and correlation-based feature selection to identify eight binary features to predict convulsive seizures. We then assessed several machine-learning algorithms to create a multivariate prediction model. We validated the best-performing model with the internal dataset and a prospectively collected external-validation dataset. We additionally evaluated a leave-one-site-out model (LOSO), in which the model was trained on data from all sites except one that, in turn, formed the validation dataset. We used these features to develop a questionnaire-based predictive panel that we implemented into a multilingual app (the Epilepsy Diagnostic Companion) for health-care workers in each geographical region. Findings: We analysed epilepsy-specific data from 4097 people, of whom 1985 (48·5%) had convulsive epilepsy, and 2112 were controls. From 170 clinical variables, we initially identified 20 candidate predictor features. Eight features were removed, six because of negligible information gain and two following review by a panel of qualified neurologists. Correlation-based feature selection identified eight variables that demonstrated predictive value; all were associated with an increased risk of an epileptic convulsion except one. The logistic regression, support vector, and naive Bayes models performed similarly, outperforming the decision-tree model. We chose the logistic regression model for its interpretability and implementability. The area under the receiver operator curve (AUC) was 0·92 (95% CI 0·91–0·94, sensitivity 85·0%, specificity 93·7%) in the internal-validation dataset and 0·95 (0·92–0·98, sensitivity 97·5%, specificity 82·4%) in the external-validation dataset. Similar results were observed for the LOSO model (AUC 0·94, 0·93–0·96, sensitivity 88·2%, specificity 95·3%). Interpretation: On the basis of these findings, we developed the Epilepsy Diagnostic Companion as a predictive model and app offering a validated culture-specific and region-specific solution to confirm the diagnosis of a convulsive epileptic seizure in people with suspected epilepsy. The questionnaire panel is simple and accessible for health-care workers without specialist knowledge to administer. This tool can be iteratively updated and could lead to earlier, more accurate diagnosis of seizures and improve care for people with epilepsy

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit.

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    • …
    corecore