43 research outputs found

    Lack of CD8+ T-cell co-localization with Kaposi’s sarcoma- associated herpesvirus infected cells in Kaposi’s sarcoma tumors

    Get PDF
    Despite the close association between Kaposi’s sarcoma (KS) and immune dysfunction, it remains unclear whether tumor infiltrating immune cells (TIIC), by their absence, presence, or dysfunction, are mechanistically correlated with KS pathogenesis. Therefore, their potential capacity to serve as prognostic biomarkers of KS disease progression or control is unclear. Because epidemic-KS (EpKS) occurs with HIV-1 co-infection, it is particularly important to compare TIIC between EpKS and HIV-negative African endemic-KS (EnKS) to dissect the roles of HIV-1 and Kaposi Sarcoma-associated herpesvirus (KSHV) in KS pathogenesis. This cross-sectional study of 13 advanced KS (4 EnKS, 9 EpKS) patients and 3 healthy controls utilized single-color immunohistochemistry and dual-color immunofluorescence assays to characterize and quantify KSHV infected cells in relation to various TIIC in KS biopsies. Analysis of variance (ANOVA) and Mann-Whitney tests were used to assess differences between groups where P-values \u3c 0.05 were considered significant. The abundance of KSHV infected cells was heterogeneous in KS biopsies. Despite the presence of T-cell chemoattractant chemokine CxCL-9 in biopsies, CD8+ T-cells were sparsely distributed in regions with evident KSHV infected cells but were readily detectable in regions devoid of KSHV infected cells (P \u3c 0.0001). CD68+ (M1) macrophages were evenly and diffusely distributed in KS biopsies, whereas, the majority of CD163+ (M2) macrophages were localized in regions devoid of KSHV infected cells (P \u3c 0.0001). Overall, the poor immune cell infiltration or co-localization in KS biopsies independent of HIV-1 co-infection suggests a fundamental tumor immune evasion mechanism that warrants further investigation

    Lack of CD8+ T-cell co-localization with Kaposi’s sarcoma- associated herpesvirus infected cells in Kaposi’s sarcoma tumors

    Get PDF
    Despite the close association between Kaposi’s sarcoma (KS) and immune dysfunction, it remains unclear whether tumor infiltrating immune cells (TIIC), by their absence, presence, or dysfunction, are mechanistically correlated with KS pathogenesis. Therefore, their potential capacity to serve as prognostic biomarkers of KS disease progression or control is unclear. Because epidemic-KS (EpKS) occurs with HIV-1 co-infection, it is particularly important to compare TIIC between EpKS and HIV-negative African endemic-KS (EnKS) to dissect the roles of HIV-1 and Kaposi Sarcoma-associated herpesvirus (KSHV) in KS pathogenesis. This cross-sectional study of 13 advanced KS (4 EnKS, 9 EpKS) patients and 3 healthy controls utilized single-color immunohistochemistry and dual-color immunofluorescence assays to characterize and quantify KSHV infected cells in relation to various TIIC in KS biopsies. Analysis of variance (ANOVA) and Mann-Whitney tests were used to assess differences between groups where P-values \u3c 0.05 were considered significant. The abundance of KSHV infected cells was heterogeneous in KS biopsies. Despite the presence of T-cell chemoattractant chemokine CxCL-9 in biopsies, CD8+ T-cells were sparsely distributed in regions with evident KSHV infected cells but were readily detectable in regions devoid of KSHV infected cells (P \u3c 0.0001). CD68+ (M1) macrophages were evenly and diffusely distributed in KS biopsies, whereas, the majority of CD163+ (M2) macrophages were localized in regions devoid of KSHV infected cells (P \u3c 0.0001). Overall, the poor immune cell infiltration or co-localization in KS biopsies independent of HIV-1 co-infection suggests a fundamental tumor immune evasion mechanism that warrants further investigation

    RNA-Seq of Kaposi\u27s sarcoma reveals alterations in glucose and lipid metabolism

    Get PDF
    Kaposi\u27s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi\u27s sarcoma (KS). It is endemic in a number of sub-Saharan African countries with infection rate of \u3e50%. The high prevalence of HIV-1 coupled with late presentation of advanced cancer staging make KS the leading cancer in the region with poor prognosis and high mortality. Disease markers and cellular functions associated with KS tumorigenesis remain ill-defined. Several studies have attempted to investigate changes of the gene profile with in vitro infection of monoculture models, which are not likely to reflect the cellular complexity of the in vivo lesion environment. Our approach is to characterize and compare the gene expression profile in KS lesions versus non-cancer tissues from the same individual. Such comparisons could identify pathways critical for KS formation and maintenance. This is the first study that utilized high throughput RNA-seq to characterize the viral and cellular transcriptome in tumor and non-cancer biopsies of African epidemic KS patients. These patients were treated anti-retroviral therapy with undetectable HIV-1 plasma viral load. We found remarkable variability in the viral transcriptome among these patients, with viral latency and immune modulation genes most abundantly expressed. The presence of KSHV also significantly affected the cellular transcriptome profile. Specifically, genes involved in lipid and glucose metabolism disorder pathways were substantially affected. Moreover, infiltration of immune cells into the tumor did not prevent KS formation, suggesting some functional deficits of these cells. Lastly, we found only minimal overlaps between our in vivo cellular transcriptome dataset with those from in vitro studies, reflecting the limitation of in vitro models in representing tumor lesions. These findings could lead to the identification of diagnostic and therapeutic markers for KS, and will provide bases for further mechanistic studies on the functions of both viral and cellular genes that are involved

    Taenia solium Infections in a Rural Area of Eastern Zambia-A Community Based Study

    Get PDF
    Taenia solium taeniosis/cysticercosis is a zoonotic infection endemic in many developing countries, with humans as the definitive host (taeniosis) and pigs and humans as the intermediate hosts (cysticercosis). When humans act as the intermediate host, the result can be neurocysticercosis, which is associated with acquired epilepsy, considerable morbidity and even mortality. In Africa, most studies have been carried out in pigs with little or no data in humans available. In this human study, conducted in a rural community in Eastern Zambia, prevalences for taeniosis and cysticercosis were determined at 6.3% and 5.8% respectively, indicating the hyperendemicity of the area. Cysticercosis infection was strongly related with age, with a significant increase in prevalence occurring in individuals from the age of 30 onward. A collected tapeworm was confirmed to be T. solium. Risk factors associated with the transmission and maintenance of the parasite such as free roaming pigs, households without latrines, backyard slaughter of pigs without inspection and consumption of undercooked pork were also present. The findings of this work have identified the need for further research in the transmission dynamics and the burden that this infection has on the resources of poor local people

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Afri-Can Forum 2

    Full text link

    Prevalence of Kaposi\u27s sarcoma-associated herpesvirus and transfusion-transmissible infections in Tanzanian blood donors

    Get PDF
    Objective: Kaposi\u27s sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi\u27s sarcoma (KS), one of the most common cancers in Tanzania. We have investigated KSHV prevalence and factors associated with KSHV infection in Tanzania. Methods: This is a cross-sectional study of voluntary blood-donors from Dar es Salaam, Tanzania. Plasma was screened for KSHV, HIV-1, HBV, HCV and Treponema pallidum (syphilis). Associations between KSHV sero-status and risk factors were analyzed. Odds ratios (OR) and 95% confidence intervals (CI) are reported to evaluate risk factors of KSHV infection. All tests were 2-tailed, and P-values \u3c0.05 were considered statistically significant. Results: The overall KSHV seroprevalence was 56.9%. Significantly increased risk of KSHV infection was detected in persons from the Lake and Central Zones (OR = 6.4, 95% CI = 1.6–25.3, P = 0.008 and OR = 5.7, 95% CI = 1.0–32.5, P = 0.048 respectively). A trend toward increased risk of KSHV infection with HIV-1 co-infection was not significant (OR = 2.8, 95% CI = 1.0–8.0, P = 0.06). Seroreactivity to T. pallidum was surprisingly high (14.9%). Conclusion: The prevalence of KSHV infection and syphilis was high among Tanzanian blood-donors. The most common transfusion-transmissible infections did not associate with KSHV infection. Regions of focal KSHV infection need further investigation for underappreciated risk factors

    Viral and Immunological Analytes are Poor Predictors of the Clinical Treatment Response in Kaposi’s Sarcoma Patients

    Get PDF
    Kaposi’s sarcoma-associated herpes virus (KSHV) is the etiologic agent for Kaposi’s sarcoma (KS). The prognostic utility of KSHV and HIV-1 (human immunodeficiency virus) viremia as well as immunological parameters in clinical management of participants with KS is unclear. The objective of this study was to investigate viral and immunological parameters as predictors of KS treatment responses in participants with KS from sub-Saharan Africa (SSA). Plasma KSHV-DNA, HIV-1 viral load, total anti-KSHV antibody, KSHV-neutralizing antibody (nAb), cytokine/chemokine levels, and T-cell differentiation subsets were quantified before and after KS treatment in 13 participants with KS and in 13 KSHV-infected asymptomatic control individuals. One-way analysis of variance and the Mann-Whitney t-test were used to assess differences between groups where p-values \u3c 0.05 were considered significant. Subjects with patch and plaque KS lesions responded more favorably to treatment than those with nodular lesions. Pre-treatment and post-treatment levels of plasma KSHV-DNA, HIV-1 viral load, KSHV-Ab responses, cytokines, and T-cell populations did not predict the KS treatment response. Elevated KSHV-humoral and cytokine responses persisted in participants with KS despite a clinical KS response. While patch and plaque KS lesions were more common among treatment responders, none of the analyzed viral and immunological parameters distinguished responders from non-responders at baseline or after treatment

    High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS- CoV-2) in sub-Saharan Africa

    Get PDF
    Objective: Significant morbidity and mortality have occurred in the USA, Europe, and Asia due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), whereas the numbers of infections and deaths in sub-Saharan Africa (SSA) have remained comparatively low. It has been hypothesized that exposure of the population in SSA to other coronaviruses prior to the COVID-19 pandemic resulted in some degree of cross-protection against SARS-CoV-2 infection and pathogenesis. We evaluated this hypothesis by comparing SARS-CoV-2 cross-reactive antibodies in pre-pandemic plasma samples collected from SSA and the USA. Method: Pre-COVID-19 pandemic plasma samples from SSA and the USA were collected and tested by immunofluorescence assay against the spike and nucleocapsid proteins of all known human coronaviruses (HCoVs). Results: The prevalence of SARS-CoV-2 serological cross-reactivity was significantly higher in samples from SSA compared with the USA. Most of these cross-reactive samples cross-recognized the SARS-CoV-2 nucleocapsid protein and the spike proteins of other HCoVs. Nucleocapsid proteins from HCoV-NL63 and HCoV-229E were detected in most samples, thereby implicating prior exposure to these two HCoVs as the likely source of cross-reactive antibodies against SARS-CoV-2. Conclusion: The low incidences of SARS-CoV-2 infection and disease in SSA appear to be correlated with the pre-pandemic serological cross-recognition of HCoVs, which are substantially more prevalent in SSA than the USA
    corecore