17 research outputs found

    Efficient Genome-Wide Detection and Cataloging of EMS-Induced Mutations Using Exome Capture and Next-Generation Sequencing

    Full text link
    Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but systematic cataloguing of mutations would further increase their utility. We examined the suitability of multiplexed global exome capture and sequencing coupled with custom-developed bioinformatics tools to identify mutations in well-characterized mutant populations of rice (Oryza sativa) and wheat (Triticum aestivum). In rice, we identified ∼18,000 induced mutations from 72 independent M2 individuals. Functional evaluation indicated the recovery of potentially deleterious mutations for >2600 genes. We further observed that specific sequence and cytosine methylation patterns surrounding the targeted guanine residues strongly affect their probability to be alkylated by ethyl methanesulfonate. Application of these methods to six independent M2 lines of tetraploid wheat demonstrated that our bioinformatics pipeline is applicable to polyploids. In conclusion, we provide a method for developing large-scale induced mutation resources with relatively small investments that is applicable to resource-poor organisms. Furthermore, our results demonstrate that large libraries of sequenced mutations can be readily generated, providing enhanced opportunities to study gene function and assess the effect of sequence and chromatin context on mutations

    Lack of Association Between GBA Mutations and Motor Complications in European and American Parkinson's Disease Cohorts

    Get PDF
    ACKNOWLEDGMENTS The authors would like to thank all of the patients and controls for participation in each of the studies. Equally, we thank all members of each of the study groups and other personnel for their contributions. Funding sources for the respective studies are as follows: The Norwegian ParkWest study has been funded by the Research Council of Norway (177966), the Western Norway Regional Health Authority (911218), the Norwegian Parkinson’s Research Foundation, and Rebergs Legacy. PINE study was supported by Parkinson’s UK (G0502, G0914, G1302), Scottish Government Chief Scientist Office, BMA Doris Hillier Award, the BUPA Foundation, NHS Grampian Endowments, and RS MacDonald Trust. The NYPUM study has been funded by the Swedish Medical Research Council, the Swedish Parkinson’s disease Association, the Swedish Parkinson’s Foundation, Parkinson Research Foundation, Erling Persson Foundation, Kempe Foundation, the Swedish Brain Foundation (Hjarnfonden), and the Vasterbotten County Council. AAS, JMG and GA are supported by the Research Council of Norway (287842). BLF acknowledges support through donations to the UCLA Clinical Neurogenomics Research Center. CK is supported by the NIH grant F32AG063442. The PEG study was supported by NIH/NIEHS grants R01-ES010544 and U54-ES012078. Publication of this manuscript was supported under the The Michael J. Fox Foundation: 2021 RFA: Accelerating Publication of Parkinson’s Disease Replication Data.Peer reviewedPublisher PD

    Lack of Association Between GBA Mutations and Motor Complications in European and American Parkinson's Disease Cohorts

    Get PDF
    Background: Motor complications are a consequence of the chronic dopaminergic treatment of Parkinson’s disease (PD) and include levodopa-induced dyskinesia (LIDs) and motor fluctuations (MF). Currently, evidence is on lacking whether patients with GBA-associated PD differ in their risk of developing motor complications compared to the general PD population. Objective: To evaluate the association of GBA carrier status with the development of LIDS and MFs from early PD. Methods: Motor complications were recorded prospectively in 884 patients with PD from four longitudinal cohorts using part IV of the UPDRS or MDS-UPDRS. Subjects were followed for up to 11 years and the associations of GBA mutations with the development of motor complications were assessed using parametric accelerated failure time models. Results: In 439 patients from Europe, GBA mutations were detected in 53 (12.1%) patients and a total of 168 cases of LIDs and 258 cases of MF were observed. GBA carrier status was not associated with the time to develop LIDs (HR 0.78, 95%CI 0.47 to 1.26, p = 0.30) or MF (HR 1.19, 95%CI 0.84 to 1.70, p = 0.33). In the American cohorts, GBA mutations were detected in 36 (8.1%) patients and GBA carrier status was also not associated with the progression to LIDs (HR 1.08, 95%CI 0.55 to 2.14, p = 0.82) or MF (HR 1.22, 95%CI 0.74 to 2.04, p = 0.43). Conclusion: This study does not provide evidence that GBA-carrier status is associated with a higher risk of developing motor complications. Publication of studies with null results is vital to develop an accurate summary of the clinical features that impact patients with GBA-associated PD.publishedVersio

    Efficient Genome-Wide Detection and Cataloging of EMS-Induced Mutations Using Exome Capture and Next-Generation Sequencing.

    No full text
    Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but systematic cataloguing of mutations would further increase their utility. We examined the suitability of multiplexed global exome capture and sequencing coupled with custom-developed bioinformatics tools to identify mutations in well-characterized mutant populations of rice (Oryza sativa) and wheat (Triticum aestivum). In rice, we identified ∼18,000 induced mutations from 72 independent M2 individuals. Functional evaluation indicated the recovery of potentially deleterious mutations for >2600 genes. We further observed that specific sequence and cytosine methylation patterns surrounding the targeted guanine residues strongly affect their probability to be alkylated by ethyl methanesulfonate. Application of these methods to six independent M2 lines of tetraploid wheat demonstrated that our bioinformatics pipeline is applicable to polyploids. In conclusion, we provide a method for developing large-scale induced mutation resources with relatively small investments that is applicable to resource-poor organisms. Furthermore, our results demonstrate that large libraries of sequenced mutations can be readily generated, providing enhanced opportunities to study gene function and assess the effect of sequence and chromatin context on mutations

    De novo pathogenic variant in SETX causes a rapidly progressive neurodegenerative disorder of early childhood-onset with severe axonal polyneuropathy

    No full text
    Abstract Pathogenic variants in SETX cause two distinct neurological diseases, a loss-of-function recessive disorder, ataxia with oculomotor apraxia type 2 (AOA2), and a dominant gain-of-function motor neuron disorder, amyotrophic lateral sclerosis type 4 (ALS4). We identified two unrelated patients with the same de novo c.23C > T (p.Thr8Met) variant in SETX presenting with an early-onset, severe polyneuropathy. As rare private gene variation is often difficult to link to genetic neurological disease by DNA sequence alone, we used transcriptional network analysis to functionally validate these patients with severe de novo SETX-related neurodegenerative disorder. Weighted gene co-expression network analysis (WGCNA) was used to identify disease-associated modules from two different ALS4 mouse models and compared to confirmed ALS4 patient data to derive an ALS4-specific transcriptional signature. WGCNA of whole blood RNA-sequencing data from a patient with the p.Thr8Met SETX variant was compared to ALS4 and control patients to determine if this signature could be used to identify affected patients. WGCNA identified overlapping disease-associated modules in ALS4 mouse model data and ALS4 patient data. Mouse ALS4 disease-associated modules were not associated with AOA2 disease modules, confirming distinct disease-specific signatures. The expression profile of a patient carrying the c.23C > T (p.Thr8Met) variant was significantly associated with the human and mouse ALS4 signature, confirming the relationship between this SETX variant and disease. The similar clinical presentations of the two unrelated patients with the same de novo p.Thr8Met variant and the functional data provide strong evidence that the p.Thr8Met variant is pathogenic. The distinct phenotype expands the clinical spectrum of SETX-related disorders

    Discovery of Rare Mutations in Populations: TILLING by Sequencing1[C][W][OA]

    No full text
    Discovery of rare mutations in populations requires methods, such as TILLING (for Targeting Induced Local Lesions in Genomes), for processing and analyzing many individuals in parallel. Previous TILLING protocols employed enzymatic or physical discrimination of heteroduplexed from homoduplexed target DNA. Using mutant populations of rice (Oryza sativa) and wheat (Triticum durum), we developed a method based on Illumina sequencing of target genes amplified from multidimensionally pooled templates representing 768 individuals per experiment. Parallel processing of sequencing libraries was aided by unique tracer sequences and barcodes allowing flexibility in the number and pooling arrangement of targeted genes, species, and pooling scheme. Sequencing reads were processed and aligned to the reference to identify possible single-nucleotide changes, which were then evaluated for frequency, sequencing quality, intersection pattern in pools, and statistical relevance to produce a Bayesian score with an associated confidence threshold. Discovery was robust both in rice and wheat using either bidimensional or tridimensional pooling schemes. The method compared favorably with other molecular and computational approaches, providing high sensitivity and specificity
    corecore