25 research outputs found

    Effectiveness of sofosbuvir based direct-acting antiviral regimens for chronic hepatitis C virus genotype 6 patients: Real-world experience in Vietnam

    No full text
    Background: Hepatitis C virus (HCV) genotype 6 is the commonest cause of chronic hepatitis C infection in much of southeast Asia, but data on the effectiveness of direct-acting antiviral agents (DAAs) against this genotype are limited. We conducted a retrospective cohort study of patients attending the Hospital for Tropical Diseases (HTD), Ho Chi Minh City, Vietnam, to define the effectiveness of DAAs in the treatment of chronic HCV genotype 6 in actual practice. Methods: We included all patients with genotype 6 infections attending our hospital between March 2016 and October 2017 who received treatment with sofosbuvir-based DAA treatment regimens, and compared their responses with those with genotype 1 infections. Results: 1758 patients (1148 genotype 6, 65.4%; 610 genotype 1, 34.6%) were analyzed. The majority of patients (1480, 84.2%) received sofosbuvir/ledipasvir (SOF/LDV) ± ribavirin (RBV); 278 (15.8%) received sofosbuvir/Daclatasvir (SOF/DCV) ± RBV. The median age of the patients was 57 years, (interquartile range (IQR) 46–64 years) The baseline HCV viral load (log IU/ml) was significantly higher in patients infected with genotype 6 compared with those infected with genotype 1 (6.8, 5.3–6.6 versus 6.3, 5.3–6.5 log10 IU/ml, p = Conclusions: Our study suggests that patients with HCV genotype 6 infection in Vietnam may respond less well to treatment with sofosbuvir based DAAs than patients with genotype 1 infections. Further studies are needed to confirm this observation and to define whether it is driven by genotype-specific mutations.</br

    Development and evaluation of a non-ribosomal random PCR and next-generation sequencing based assay for detection and sequencing of hand, foot and mouth disease pathogens

    No full text
    Hand, foot and mouth disease (HFMD) has become a major public health problem across the Asia-Pacific region, and is commonly caused by enterovirus A71 (EV-A71) and coxsackievirus A6 (CV-A6), CV-A10 and CV-A16. Generating pathogen whole-genome sequences is essential for understanding their evolutionary biology. The frequent replacements among EV serotypes and a limited numbers of available whole-genome sequences hinder the development of overlapping PCRs for whole-genome sequencing. We developed and evaluated a non-ribosomal random PCR (rPCR) and next-generation sequencing based assay for sequence-independent whole-genome amplification and sequencing of HFMD pathogens. A total of 16 EV-A71/CV-A6/CV-A10/CV-A16 PCR positive rectal/throat swabs (Cp values: 20.9-33.3) were used for assay evaluation.Our assay evidently outperformed the conventional rPCR in terms of the total number of EV-A71 reads and the percentage of EV-A71 reads: 2.6 % (1275/50,000 reads) vs. 0.1 % (31/50,000) and 6 % (3008/50,000) vs. 0.9 % (433/50,000) for two samples with Cp values of 30 and 26, respectively. Additionally the assay could generate genome sequences with the percentages of coverage of 94-100 % of 4 different enterovirus serotypes in 73 % of the tested samples, representing the first whole-genome sequences of CV-A6/10/16 from Vietnam, and could assign correctly serotyping results in 100 % of 24 tested specimens. In all but three the obtained consensuses of two replicates from the same sample were 100 % identical, suggesting that our assay is highly reproducible.In conclusion, we have successfully developed a non-ribosomal rPCR and next-generation sequencing based assay for sensitive detection and direct whole-genome sequencing of HFMD pathogens from clinical samples

    Development and evaluation of a non-ribosomal random PCR and next-generation sequencing based assay for detection and sequencing of hand, foot and mouth disease pathogens

    No full text
    Hand, foot and mouth disease (HFMD) has become a major public health problem across the Asia-Pacific region, and is commonly caused by enterovirus A71 (EV-A71) and coxsackievirus A6 (CV-A6), CV-A10 and CV-A16. Generating pathogen whole-genome sequences is essential for understanding their evolutionary biology. The frequent replacements among EV serotypes and a limited numbers of available whole-genome sequences hinder the development of overlapping PCRs for whole-genome sequencing. We developed and evaluated a non-ribosomal random PCR (rPCR) and next-generation sequencing based assay for sequence-independent whole-genome amplification and sequencing of HFMD pathogens. A total of 16 EV-A71/CV-A6/CV-A10/CV-A16 PCR positive rectal/throat swabs (Cp values: 20.9-33.3) were used for assay evaluation.Our assay evidently outperformed the conventional rPCR in terms of the total number of EV-A71 reads and the percentage of EV-A71 reads: 2.6 % (1275/50,000 reads) vs. 0.1 % (31/50,000) and 6 % (3008/50,000) vs. 0.9 % (433/50,000) for two samples with Cp values of 30 and 26, respectively. Additionally the assay could generate genome sequences with the percentages of coverage of 94-100 % of 4 different enterovirus serotypes in 73 % of the tested samples, representing the first whole-genome sequences of CV-A6/10/16 from Vietnam, and could assign correctly serotyping results in 100 % of 24 tested specimens. In all but three the obtained consensuses of two replicates from the same sample were 100 % identical, suggesting that our assay is highly reproducible.In conclusion, we have successfully developed a non-ribosomal rPCR and next-generation sequencing based assay for sensitive detection and direct whole-genome sequencing of HFMD pathogens from clinical samples

    Patient-based transcriptome-wide analysis identify interferon and ubiquination pathways as potential predictors of influenza a disease severity

    Get PDF
    Background The influenza A virus is an RNA virus that is responsible for seasonal epidemics worldwide with up to five million cases of severe illness and 500,000 deaths annually according to the World Health Organization estimates. The factors associated with severe diseases are not well defined, but more severe disease is more often seen among persons aged &gt;65 years, infants, pregnant women, and individuals of any age with underlying health conditions. Methodology/Principal Findings Using gene expression microarrays, the transcriptomic profiles of influenza-infected patients with severe (N = 11), moderate (N = 40) and mild (N = 83) symptoms were compared with the febrile patients of unknown etiology (N = 73). We found that influenza-infected patients, regardless of their clinical outcomes, had a stronger induction of antiviral and cytokine responses and a stronger attenuation of NK and T cell responses in comparison with those with unknown etiology. More importantly, we found that both interferon and ubiquitination signaling were strongly attenuated in patients with the most severe outcomes in comparison with those with moderate and mild outcomes, suggesting the protective roles of these pathways in disease pathogenesis. Conclusion/Significances The attenuation of interferon and ubiquitination pathways may associate with the clinical outcomes of influenza patients
    corecore