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Abstract

Background: The influenza A virus is an RNA virus that is responsible for seasonal epidemics worldwide with up to five
million cases of severe illness and 500,000 deaths annually according to the World Health Organization estimates. The
factors associated with severe diseases are not well defined, but more severe disease is more often seen among persons
aged .65 years, infants, pregnant women, and individuals of any age with underlying health conditions.

Methodology/Principal Findings: Using gene expression microarrays, the transcriptomic profiles of influenza-infected
patients with severe (N = 11), moderate (N = 40) and mild (N = 83) symptoms were compared with the febrile patients of
unknown etiology (N = 73). We found that influenza-infected patients, regardless of their clinical outcomes, had a stronger
induction of antiviral and cytokine responses and a stronger attenuation of NK and T cell responses in comparison with
those with unknown etiology. More importantly, we found that both interferon and ubiquitination signaling were strongly
attenuated in patients with the most severe outcomes in comparison with those with moderate and mild outcomes,
suggesting the protective roles of these pathways in disease pathogenesis.

Conclusion/Significances: The attenuation of interferon and ubiquitination pathways may associate with the clinical
outcomes of influenza patients.
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Introduction

The influenza A virus is an enveloped-, single-stranded,

segmented negative-sense RNA virus that is responsible for

seasonal epidemics worldwide. The World Health Organization

estimates that seasonal influenza results in up to five million cases

of severe illness and 500,000 deaths annually. The risk factors

associated with severe diseases are not well defined, but more

severe disease is more often seen among persons aged .65 years,

infants, pregnant women, and individuals of any age with

underlying health conditions [1].
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The interaction between the virus and the host genetic and

immune status clearly plays an important role in determining the

outcome of the infection [2]. In human and animal models of

seasonal influenza, influenza virus A/H5N1 (Avian Influenza A

H5N1 virus) and A/H1N1/1918 (Influenza A H1N1 1918 strain)

the cytokine levels in host respiratory secretions and serum have

been associated with disease severity and outcome [3]. Hypercy-

tokinemia was observed in humans infected with influenza virus

A/H5N1 and found to be correlated to severity and mortality [4].

The innate immune responses in humans infected with influenza

virus A/H5N1 suggest that pro-inflammatory mediators are

contributing to disease pathogenesis, with elevated blood levels

of IL-6, TNF-a, IFN-c, and sIL-2R and elevated levels of IP-10,

MCP-1, and MIG observed in patients [5]. Such responses may

contribute to acute lung injury, acute respiratory distress syndrome

(ARDS) and multi-organ failure observed in many patients.

Recently, IFITM3, an interferon-induced transmembrane protein,

has been shown to have important roles in restricting the

morbidity and mortality in mice infected with influenza virus [6].

The majority of host response studies in influenza have focused

on direct measurements of immunological markers in blood from

patients or from expression profiles in lung tissue in animal models

[3,7,8]. However, studies that have assessed the functional

interactions between gene expression profiles and individual

clinical presentation have not been performed. In this prospective

study we explored these functional interactions and linked these

data with the clinical features of patients infected with influenza

viruses in various degrees of severity to provide insights into the

pathogenesis of severe influenza.

Materials and Methods

Patient population and sample collection
Mild influenza samples and other febrile illness (OFI)

samples. Patients were recruited between January 2008 and

January 2010 from an undifferentiated fever inclusion study

(EDEN) in Singapore, focusing on early enrollment after fever

development. The EDEN study has been ongoing since 2005 [15].

Individuals eligible for inclusion gave their written consent to

participate in the study, were $18 years of age and presented #

72 h from onset of fever $38uC. Patients were tested by PCR for

influenza A and B, respiratory syncytial virus, parainfluenza 1–3,

coronavirus, metapneumovirus, enterovirus and adenovirus in

nasal swabs and for dengue virus 1–4, human parvovirus B19,

Cytomegalovirus, and Epstein Bar virus in EDTA blood. To

characterize the early transcriptional response to influenza A

infection in-vivo, we performed whole-blood transcriptional

profiling on all samples from both groups at 72 h after fever

onset, at 3–8 days and 3–4 weeks after self-reported fever onset.

The time point of the 1st, 2nd and 3rd sampling was regarded as

acute disease, defervescence and convalescence, respectively.

Moderate and severe influenza samples. Samples of

moderate and severe influenza patients were collected from a

multi-center, double-blinded, randomized control trial of standard

dose (75 mg bd or pediatric equivalent) versus double dose

(150 mg bd or pediatric equivalent) oseltamivir for the treatment

of influenza patients requiring hospitalization (Registered Clin-

icalTrials.gov: NCT00298233) [9]. The study took place across

five hospitals in Vietnam, three hospitals in Indonesia, four

hospitals in Thailand, and one in Singapore, all hospitals being

part of the Southeast Asia Infectious Disease Clinical Research

Network (SEAICRN). The primary endpoint of the trial was the

proportion of subjects with no detectable viral RNA in respiratory

swabs at day 5 as measured by RT-PCR. Whole-blood samples

were collected in PAXgene tubes on day 0, 5 and 28 of enrolment

into the study. For this study, to avoid the effect of the treatment

on the host response, only the whole blood samples collected

before oseltamivir treatment (study day 0) and at follow up (day 28)

were used.

The inclusion criteria of this study were: (i) age $1 year, (ii)

duration of illness #10 (non-H5N1) or #14 (H5N1) days, (iii)

positive result for influenza virus A or B using a rapid antigen test

or qualitative reverse transcriptase polymerase chain reaction (RT-

PCR) in a respiratory specimen, (iv) presence of at least one

respiratory symptom (cough, dyspnea or sore throat), (v) disease

requiring hospital admission, and (vi) one of the following signs of

severe influenza: (a) new infiltrate on a chest X-ray, (b) tachypnea

(respiratory rate $30 for ages $12 years, rate $40 for ages 6 to 12

years, rate $45 for ages 3 to 6 years, rate $50 for ages 1– to 3

years), (c) dyspnea (unable to speak full sentences, or use of

accessory respiratory muscles), or (d) hypoxia (arterial oxygen

saturation #92% on room air by a transcutaneous method).

Subjects infected with avian influenza virus A/H5N1 were

enrolled with any degree of severity. The exclusion criteria were:

(i) pregnancy or urine b-hCG positivity, (ii) breast feeding, (iii)

prior oseltamivir therapy for .72 hours duration or double dose

(any duration) within the past 14 days, (iv) allergy or severe

intolerance of oseltamivir, (v) creatinine clearance (CrCl) ,

10 mL/min. Severe influenza was defined as: i) requiring

mechanical ventilation or ii) presenting with severe tachypnea

((respiratory rate $30 for ages $12 years, rate $40 for ages 6 to

12 years, rate $45 for ages 3 to 6 years, rate $50 for ages 1–to 3

years)) and hypoxia (arterial oxygen saturation #92% on room air

by a transcutaneous method.

Ethics statement
The EDEN study was conducted in accordance with the

Declaration of Helsinki and approved by the National Health

Group (NHG) ethical review board (DSRB B/05/013). Individ-

uals eligible for inclusion gave their written consent to participate

in the study, and were $18 years of age. Samples of moderate and

severe influenza patients were collected from a multi-center,

double-blinded, randomized control trial of standard dose (75 mg

bd or pediatric equivalent) versus double dose (150 mg bd or

pediatric equivalent) oseltamivir for the treatment of influenza

patients requiring hospitalization (Registered ClinicalTrials.gov:

NCT00298233) [9].

Gene expression microarray
One-color array technology on the Illumina platform (Illumina

Inc, San Diego, CA, USA) was used for gene expression

microarray. In brief, whole-blood (2.5 ml) from PAXgene RNA

tubes (Qiagen, Sussex, UK) was extracted using Paxgene RNA kits

(Qiagen). Biotinylated amplified cRNA was generated by in vitro

transcription (IVT) technology using Illumina TotalPrep RNA

Amplification Kit (Ambion, Inc., Austin, TX, USA) according to

the manufacturer’s instructions. After purification, 2 mg of cRNA

was hybridized to an Illumina HumanRef-12 V4 BeadChip

(containing probes to more than 29,000 gene transcripts) at 55uC
for 18 hours following the manufacturer’s instructions (Illumina,

Inc., San Diego, CA, USA). This was followed by washing,

blocking and streptavidin-Cy3 staining steps. Finally, the chip was

scanned with an Illumina Bead Array Reader confocal scanner

and checked using Illumina QC analysis. Background subtracted

raw gene expression intensity data was exported from the

GenomeStudio software and used for further analysis.

Signatures of Severe Influenza Revealed by Gene Expression Microarray
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Data normalization
All datasets were normalized by using R (http://www.

bioconductor.org) as described below. First, the raw data was

log10 transformed before Z score transformation was performed

[10]. The Z score was calculated for each sample by subtracting

the overall mean gene intensity from the raw intensity signal for

each gene (reference). After that, this data was divided by the

standard deviation of all of the measured intensities as in the

following formula:

Zscore~ Intensity(G){Mean(intensity(G1:::Gn)
SD(G1:::Gn)

where G is any gene on the microarray and G1…Gn represents

the aggregate measure of all of the genes.

Statistical analysis
We used the Z score as the base value to identify differentially

expressed probes in comparisons between any two groups of

samples. Probes with high Z score are those highly expressed while

those with low Z score are the least expressed probes [10].

Conventional fold change calculation could be simple to

understand but at low intensities, where data is much more

variable, false positive rate could increase. In contrast, at high

intensity, where probes are significantly expressed might not be

identified. Z score transformation calculate the number of

standard deviations a particular data point is form the mean, To

identify differentially expressed probes in each group of patients, Z

ratio for each genes was calculated [10]. Z score was calculated by

dividing the mean difference in Z score between the groups by the

standard deviation of the Z score difference across all the genes.

Zratio~
Mean½Zscore(group1)�{Mean½Zscore(group2)�

SD(ZscoredifferenceG1:::Gn)

Where G1…Gn represents the aggregate measure of all the genes.

A Z ratio of 6 1.96 is equivalent to the significant level of P

value,0.05 [10].

SAM
SAMR package for R (www.bioconductor.org) was used for the

Z-score normalized data. For comparison between acute and

convalescent samples from OFI, mild and moderate patients, two

class-paired test was used. For comparison between acute and

convalescent samples from patients with severe influenza, a two

class-unpaired test was used. The SAM procedure combines the

calculation of a t-test statistic value for each gene with subsequence

permutation (N = 1,000) analysis and the calculation of false

discovery rate (FDR). Statistic data from Z difference, Z ratio and

SAM were combined to identify the differentially expressed genes.

Significant genes were those that have SAM FDR #0.05, Z ratio

of 6 1.96.

Ingenuity Pathway analysis (IPA)
The differentially expressed genes (DEGs) were identified using

Ingenuity Pathway Analysis (IPA) (www.ingenuity.com). The IPA

database contains canonical pathways and functional gene

relationships expertly-curated from the literature which helps us

to understand the disease processes by identifying key biological

functions and novel molecular networks. DEG lists are cross-

referenced against this database to identify enriched pathways

associated with the study conditions. Significant canonical

pathways were defined as having a Fisher’s exact test P value,

Table 1. Baseline characteristics of the patients in the study.

Symptoms OFI (N = 83) Mild (N = 73) Moderate (N = 40) Severe (N = 11)

Demographic

Age, years median (range) 25 (18–70) 25 (18–69) 41.5 (5–70) 24 (19–73)

Sex, Female (%) 26 (31.3%) 24 (32.9%) 21 (52.5%) 4 (36%)

D.O.I, day median (range) 6 (3–8) 5 (3–8) 4 (1–9) 6 (2–9)

Virology

Quantitative PCR positive ND 35 (86%) 6 (55%)

Influenza PCR Ct value ND 31.52 (21.1–39.9) 34.825 (26.1–39.88)

2009 pandemic H1N1 Neg 9 (12%) 24 (60%) 6 (54.4%)

H1N1 Neg 45 (62%) 1 (2.5%) 2 (18.2%)

H3N2 Neg 19 (26%) 14 (35%) 3 (27.4%)

H5N1 Neg 0 (0%) 1 (2.5%) 0 (0%)

Hematology, median (range)

WBC (103/mL) 6.1 (1.3–18.9) 4.7 (1.4–9.5) 5.9 (1.55–6.44) 11.89 (4.6–28)

Neutrophil (103/mL) 3.45 (1.3–9.4) 2.6 (0.5–6.5) 3.67 (0.62–10.88) 9.6 (2.1–24.5)

Lymphocyte (103/mL) 2 (0.7–6.1) 1.7 (0.5–3.6) 2.19 (0.23–7.56) 3 (0.24–11.57)

HGB (g/dL) 14.6 (6.9–23.7) 14.85 (9.5–22.4) 13 (10.7–16.2) 11.7 (8.7–15.2)

HCT (%) 43.5 (21.9–81.1) 44.6 (29.8–71.6) 38.8 (32.5–44.9) 35.1 (27.8–46)

PLT (103/mL) 273 (86–513) 218 (79–370) 206 (55–345) 115 (27–250)

Values are presented in median (range); WBC: white blood cell count (normal range: 4–126103/mm3); OFI: other febrile illness; D.O.I: day of illness; HGB: hemoglobin;
HCT: hematocrit; PLT: platelet; ND: not done; Neg: negative.
doi:10.1371/journal.pone.0111640.t001

Signatures of Severe Influenza Revealed by Gene Expression Microarray
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0.05 (B–H correction). In addition to filtering by the P values, each

enriched pathways were analyzed carefully by taking into account

the ratio and the number of the gene in each pathway.

Results

Mild and OFI (Other Febrile Illness) patients
A total of 167 patients with flu-like symptoms were recruited

into the study. Of these 167 patients, 84 were infected with

influenza virus A/H1N1pdm09 (Influenza A H1N1 pandemic

2009), pre-2009 seasonal A/H1N1, H3N2 virus, rhinovirus, or co-

infected with rhinovirus and seasonal H1N1 virus. The other 83

were all pathogen-negative patients during the same time interval

and were therefore designated as the OFI group. Amongst the 84

pathogen-infected patients, those who were infected with rhino-

virus or co-infected with rhinovirus were removed. Only patients

infected with influenza A virus were used for the data analysis

(N = 73). These patients were defined as having mild influenza

because they were not hospitalized and did not present with any

symptoms of moderate or severe influenza. To match the duration

of illness of moderate and severe patients, mild influenza samples

collected at the second time point (ranging from day 3 to day 8)

and their follow-up samples (3–4 weeks after) were used. The

baseline characteristics of these patients are summarized in

Table 1 and their clinical symptoms are summarized in Table 2.

Moderate and severe influenza patients
Samples from the moderate and severe influenza patients were

collected during the same time frame (from 2007 to 2010), and a

total of 153 whole blood samples from 51 patients were collected.

Of these 51 patients, 30 patients were infected with influenza virus

A/H1N1pdm09, 17 patients with A/H3N2 virus, and three with

pre-2009 seasonal A/H1N1 and one with A/H5N1 virus. Among

the 51 patients, only 11 fulfilled the criteria for severe disease while

the 40 remaining patients were considered to have moderate

disease. Although the sample sizes are small, there does not appear

to have any correlation between severity and the infecting

influenza virus strain. The baseline characteristics of both groups

of patients are summarized in Table 1.

At the first time point, patients with severe disease were enrolled

after a median duration of illness of 5.8 days (interquartile range or

IQR of 2–9 days), and patients with moderate disease after 4.3

days (IQR 1–9 days); the distribution in days of illness prior to

enrolment was not statistically significant between both groups. At

enrolment, severe patients had significantly higher total white

blood cell counts (Table 1). When the differential white cell

counts were scrutinized, patients with severe disease had

significantly higher absolute neutrophil counts. The absolute

platelet count was also significantly lower in the patients with

severe disease.

Table 2. Clinical manifestations of the patients in the study.

Symptoms assessed in all patients
OFI
(N = 84)

Mild
(N = 73)

Moderate
(N = 40)

Severe
(N = 11)

Hospitalization, case (percentage) 0 (0%) 0 (0%) 40 (100%) 11 (100%)

Headache, case (percentage) 24 (29%) 20 (27%) 26 (65%) 7 (64%)

Diarrhea, case (percentage) 2 (2.4%) 3 (4%) 11 (28%) 2 (18%)

Nausea, case (percentage) 8 (10%) 3 (4%) 13 (33%) 2 (18%)

Vomiting, case (percentage) 1 (1.2) 0 (%) 15 (38%) 2 (18%)

cough, case (percentage) 23 (28%) 28 (38%) 39 (98%) 11 (100%)

Sore throat, case (percentage) 9 (11%) 6 (8%) 24 (60%) 5 (45%)

Symptoms that were assessed only in moderate and severe patients

Admitted to Intensive care unit, count (percentage) – – 7 (17.5%) 11 (100%)

Supplemental Oxygen, count (percentage) – – 17 (43%) 11 (100%)

Arterial Oxygen Saturation ,92%, count (percentage) – – 4 (10%) 2 (18%)

Mechanical Ventilation, count (percentage) – – 0 (0%) 7 (64%)

Severe Dyspnea, count (percentage) – – 1 (2.5%) 7 (63%)

Respiratory Rate, median (range) – – 22 (14–40) 30 (20–38)

Severe Tachypnea, count (percentage) – – 2 (5%) 6 (55%)

Temp, median (range) – – 38 (36–40.4) 39 (37.9–40.2)

Pulse, median (range) – – 90 (68–120) 118 (70–155)

Blood Pressure, median (range) – – 111.5 (90–160) 105 (60–140)

Lansky Score, median (range) – – 80 (50–100) 20 (10–60)

Abnormal Cardiovascular, count (percentage) – – 1 (2.5%) 5 (45%)

Coma, count (percentage) – – 0 (0%) 1 (9%)

Crackles, count (percentage) – – 22 (55%) 9 (82%)

Abnormal X-ray, count (percentage) – – 31 (78%) 11 (100%)

Pleural Effusion, count (percentage) – – 0 (%) 2 (18%)

doi:10.1371/journal.pone.0111640.t002

Signatures of Severe Influenza Revealed by Gene Expression Microarray

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e111640



Gene expression microarray
Using paired SAM test to compare expression profiles of acute

(N = 83) and convalescent (N = 83) samples from OFI patients, we

identified 287 differentially expressed transcripts (DATs). Of these

287 transcripts, 201 were less abundant and 86 were more

abundant in acute samples. Using the same criteria, we detected

2,081 (1,316 more and 765 less abundant) DATs in acute samples

from patients with mild influenza in comparison with their

convalescent samples. When comparing acute samples from

moderate patients with the convalescent (N = 40), we identified

4,108 DATs (2788 more and 1,320 less abundant). For severe

patients, because follow-up samples were available for only 7 out

of 11 patients, we performed unpaired SAM test instead of paired

SAM test in order to avoid losing samples. For this analysis, we

found 854 DATs in acute samples (430 more and 424 were less

abundant). The results of these comparisons are summarized in

Figure 1.

Up-regulated pathways. In comparison with febrile patients

with unknown aetiology, patients with influenza infections showed

strong antiviral and cytokine responses. Amongst the most

significant pathways, Toll-like receptor signaling, IL-10 signaling,

Role of PKR in Interferon Induction and Antiviral Response and

NFkB signaling were significantly up-regulated in the influenza

patients. Significant genes associated with these pathways in each

condition are summarized in Figure 2. Although the same

pathways were activated in influenza patients regardless of their

severity, different genes sets in each pathway were activated in

patients with different outcomes (Figure 2). For example, patients

with severe influenza had significant up-regulation of TLR10,

NFKBIA, IL1R2, SOCS3, IL4R, IL1R1, PROK1, ECE1,

IFNAR1, MMP9, PPP1R10 and PPP2R2A whilepatients with

moderate influenza shared similar antiviral and cytokine response

with both those with severe (TLR2, TRL4, TLR5, TLR8,

IL10RB, IL18RAP, IL18R1, MAPK13, MAPK14, FCGR1A

and IRAK3) and with mild outcomes (TLR7, TICAM3, IL1RN,

STAT1, SOCS1, JAK2, IRAK2, TNFAIP, CASP3, CCL2 and

CCR1). Genes in IL-1 signaling, IL-22 signaling, Production of

Nitric Oxide and Reactive Oxygen Species in Macrophages and

p38 MAPK signaling were only up-regulated in moderate and

severe patients (Table 3). In comparison with patients with severe

outcome, those with moderate and mild outcome were character-

ized with a significant up-regulation of protein ubiquitination,

interferon signaling pathway and Activation of IRF by Cytosolic

Pattern Recognition Receptors (Table 4). The interferon signal-

ing pathway was completely attenuated in patients with severe

influenza (only one gene was activated: IFNGR1) whereas the

pathway was strongly up-regulated in patients with moderate

(P = 1022.8, ratio 0.36, 13 genes) and mild (P = 1024.8, ratio = 0.33,

12 genes) outcomes (Figure 3). Similarly, the protein ubiquitina-

tion pathway were highly up-regulated in moderate (P = 1029,

ratio 0.26, 63 genes) and mild (P = 1027, ratio 0.16, 42 genes)

patients but was not up-regulated in those with severe outcome

(Table 4).

Many interferon-induced transmembrane (IFITM) proteins

were shown to play important roles in influenza disease outcomes.

Here, we investigated all the IFITMs and other interferon-induced

genes (64 in total) that were included on the Illumina HumanRef-

12 V4 BeadChip. Table 5 shows all the IFITMs and other

interferon-related genes and their expression levels in our patient

groups. Amongst the 72 transcripts, 30 transcripts were signifi-

cantly up-regulated in patients with moderate and mild outcomes

while none of these were significant in patients with severe

outcome or those with OFI (Table 5). Amongst the most

significant genes are IFI27, IFI44, OAS3, OAS1, OASL, IFIT1,

IFIH1, IFIT3 and DHX58 (RIG-I) which were highly up-

regulated in moderate and mild patients and down-regulated in

patients with severe outcome (Table 5).

Down-regulation pathways. T cell and NK cell related

responses were down-regulated in all groups of influenza patients

but to a weaker magnitude in those with OFI (Table 6). Natural

Killer Cell Signaling, Crosstalk between Dendritic Cells and

Natural Killer Cells, CD28 Signaling in T Helper Cells, PKCh
Signaling in T Lymphocytes were amongst the most significant

pathways. Similar to the up-regulated pathways, although the

pathway names were shared between different groups but the

genes activated in each pathway were different. NK cell response

related genes such as CD247, KIR2DL4, KIR3DL1, KIR3DL3

and KLRB1 were down-regulated only in moderate and severe

patients while genes such as KIR2DL1, KIR2DS4 and KIR3DL2

were down-regulated in all three groups of influenza patients

(Figure 4). CD244, CD3E, CD4, HLA-DMB, HLA-DPA1,

NCR3, PLD3, PRR5 and VEGFA were down-regulated only in

Figure 1. The numbers of differentially expressed transcripts (FDR 0.05, fold change .2) were observed in patients with mild and
moderate influenza in comparison with OFI and severe patients. The y-axis shows the number of differentially expressed transcripts in acute
samples for each condition on the x-axis in comparison with their convalescent samples. Up-regulated genes in the acute phase are in blue, genes
down-regulated in dark red.
doi:10.1371/journal.pone.0111640.g001
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Figure 2. Genes that were involved in Toll-like receptor signaling, IL-10 signaling, Role of PKR in Interferon Induction and Antiviral
Response and NFkB signaling pathways. The pathway names were shared between different groups but the activated genes in each pathway
were different. Differentially expressed genes (FDR ,0.05, fold change .2) were highlighted in grey.
doi:10.1371/journal.pone.0111640.g002
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patients with severe outcomes (Figure 5). Beside NK cell and T

cells related response, pathways related to the host translational

regulation such as eIF4 and p70S6K signaling, EIF2 signaling and

mTOR signaling were significantly down-regulated in all influenza

infected groups but with a stronger magnitude in patients with

mild and moderate disease.

Discussion

By investigating the transcriptional profiles of patients with a

wide range of disease severity from non-influenza fever of

unknown aetiology to mild, moderate and severe influenza, we

found that patients with confirmed influenza infections had similar

and stronger host responses in comparison with patients with fever

of unknown aetiology. The interferon response was shown to be

strongly up-regulated in influenza virus A infection [11], however,

the exact mechanism of interferon responses in different clinical

severities of influenza has not been described. Here, we found that

the interferon signaling pathway and the protein ubiquitination

pathway were attenuated in patients with fever of unknown

aetiology and patients with severe influenza manifestations

suggesting the protective roles of these pathways in the disease

mechanism. Furthermore, our data suggests that interferon

signaling pathway and other interferon-induced transmembrane

proteins (IFITMs) play important protective roles in the disease

mechanism. Amongst the IFITMs, IFITM3 has been shown to

block influenza virus entry to the cells [12] and limit the severity of

influenza virus infection in mice [13]. Our data suggests that not

only IFITM3, but other IFITMs and ISGs genes could similarly

play important roles in the disease outcomes.

Apart from the interferon pathway, the ubiquitiniation signaling

pathway was also attenuated in patients with severe outcome.

Protein ubiquitination is a post-translational process involving the

addition of ubiquitin to a protein substrate, and it plays important

roles in protein-protein interactions. For example the NS1 protein

from influenza A virus could inhibit the IFN response by inhibiting

Figure 3. Interferon signaling pathways was highly up-regulated in moderate and mild influenza patients but was attenuated in
patients with severe outcome. Up-regulated genes were highlighted in grey. IFNGR1 was the only gene that was up-regulated in severe patients
while a large number of other genes were up-regulated in moderate and mild patients.
doi:10.1371/journal.pone.0111640.g003
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Figure 4. Genes that were involved in the most significantly down-regulated pathways such as Natural Killer Cell Signaling,
Crosstalk between Dendritic Cells and Natural Killer Cells, CD28 Signaling in T Helper Cells, PKCh Signaling in T Lymphocytes. The
pathway names were shared between different groups but the activated genes in each pathway were different. Differentially expressed genes (FDR
,0.05, fold change .2) were highlighted in grey.
doi:10.1371/journal.pone.0111640.g004
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the ubiquitination of the viral RNA sensor RIG-I [14]. RIG-I is

the key host sensor for viral RNA inside the cytoplasm that

accounts for the induction of the host IFN response [15].

Ubiquitination of the CARD domain in RIG-I is essential for

the activation of IRF3 and NFkB which in turn induce the IFN

production [16] [17]. As mentioned above, ubiquitination of RIG-

I is the key process by which the host could recognize the influenza

virus RNA to induce interferon response. The attenuation of the

protein ubiquitination pathway and RIG-I could lead to the lack

of interferon response in the severe patients. It was also shown that

the host protein ubiquitination system is required for influenza

virus replication [17]. This may explain why the percentage of

patients who had virus detected at sample collection was lower in

Figure 5. Difference in expression of transcripts in T cell and NK cell signaling pathways. These transcripts were only down-regulated in
patients with severe symptoms but not in OFI, mild and moderate disease (*: P#0.05).
doi:10.1371/journal.pone.0111640.g005
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the severe group (55%) in comparison with those in the moderate

group (86%).

As mentioned, although the same pathways were up-regulated

in the patients with different severity outcomes, certain genes such

as TLR10, NFKBIA, IL1R2, SOCS3, IL4R, IL1R1, PROK1,

ECE1, IFNAR1, MMP9, PPP1R10 and PPP2R2A were up-

regulated only in the severe patients. It was shown in mouse model

that MMP9, which is capable of digesting the extracellular matrix,

was produced mainly by neutrophils and was required for

neutrophils migration to the respiratory tract in response against

viral replication [18]. The up-regulation of MMP9 in the severe

patients suggests the contribution of this gene in the disease

outcome. The up-regulation of the Suppressor of cytokine

signaling 3 (SOCS3) gene was IFNAR1-dependent and it has

negative regulatory functions to the innate immune response

which could inhibit type I interferon signaling [19]. The lack of

interferon signaling in the severe patients could be explained by

the up-regulation of SOCS3 in these patients. TLR10 has recently

been shown to play a role in innate immune response in influenza

infection and that its expression is stronger during infection by the

highly pathogenic influenza H5N1 virus [20].

Amongst the down-regulated pathways, the T cell signaling

response and NK cell responses were predominant in all influenza

patients. More interestingly, these pathways in patients with severe

disease were more predominant in comparison with patients with

mild and moderate disease. Previous studies have shown that type

I interferon response could be exploited by opportunistic

pathogens in influenza infection which in turn could increase the

host susceptibility to secondary bacterial infections such as

Streptococcus pneumoniae by negatively regulating the T cell

response [21]. We did not detect any secondary bacterial

infections in the moderate and severe patients by using both

conventional blood culture or by 16S rRNA sequencing (data not

shown). This could be due to the fact that all of the patients were

treated with antibiotics before they were recruited to the study.

Many genes involved in T cell and NK cell responses were

down-regulated in influenza infected patients regardless of their

clinical outcome, however, we found that some keys transcripts in

the T cell and NK cell signaling response were only down-

regulated in patients with severe influenza (CD244, CD3E, CD4,

CD1A, NCR3 and IL10RA) suggesting the important roles of

these transcripts in severe influenza. Previous studies have shown

that severe influenza A disease was associated with a transient NK

cell and CD8 T cell response [22,23]. Amongst the down-

regulated genes, NCR3 has been reported to show a direct

interaction with influenza viruses whereby the virus down-

regulates the cytotoxicity of NK cells mediated by this gene

[24,25]. In addition, single polymorphisms in NCR3 have been

shown to be strongly associated with decreased lung function in a

recently conducted large scale (N.48,000) genome-wide associa-

tion study of forced expiratory volume as a surrogate for lung

function [26].

Despite having relatively large sample sizes for the moderate,

mild and OFI groups, the one limitation of our study is the small

sample size of severe influenza patients that we managed to recruit

in the duration of the study. Nevertheless, we have generated a

large exploratory transcriptomic dataset in influenza disease with a

wide spectrum of severity. Although the validation of these

findings is beyond the scale of the current study, our dataset can

serve as a valuable data mine for researchers in the field to select

their own gene candidates for hypothesis testing and validation.

Taken together, by investigating the global host transcriptional

profile in influenza virus A infected patients with different clinical

outcomes, we have provided insights into the global gene

expression in influenza virus A infection. In particular, we have

revealed the attenuation of interferon and protein ubiquitination

pathways and the down-regulation of T and NK cell related

responses in patients with severe influenza virus A infections.

Lastly, we propose the following candidate genes for further

studies: MMP9, SOCS3, IFITMs, TLR10, RIG-I, CD244 and

NCR3.
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