209 research outputs found

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Patient experiences and health system responsiveness in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients' views are being given more and more importance in policy-making. Understanding populations' perceptions of quality of care is critical to developing measures to increase the utilization of primary health care services. Using the data from the South African <it>World Health Survey </it>(WHS), the current study aims to evaluate the degree of health care service responsiveness (both out-patient and in-patient) and comparing experiences of individuals who used public and private services in South Africa.</p> <p>Methods</p> <p>A population-based survey of 2352 participants (1116 men and 1236 women) was conducted in South Africa in 2003, the WHS – as part of a World Health Organization (WHO) project focused on health system performance assessment in member countries.</p> <p>Results</p> <p>Health care utilization was among those who attended in-patient care 72.2% attended a public and 24.3% a private facility, and of those who attended out-patient care 58.7% attended a public and 35.7% a private facility. Major components identified for out-patient care responsiveness in this survey were highly correlated with health care access, communication and autonomy, secondarily to dignity, confidentiality and quality of basic amenities, and thirdly to health problem solution. The degree of responsiveness with publicly provided care was in this study significantly lower than in private health care. Overall patient non-responsiveness for the public out-patient service was 16.8% and 3.2% for private care. Discrimination was also one of the principal reasons for non-responsiveness in all aspects of provided health care.</p> <p>Conclusion</p> <p>Health care access, communication, autonomy, and discriminatory experiences were identified as priority areas for actions to improve responsiveness of health care services in South Africa.</p

    Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Archaea are prokaryotic organisms with simplified versions of eukaryotic transcription systems. Genes coding for the general transcription factors TBP and TFB are present in multiple copies in several Archaea, including <it>Halobacterium </it>sp. NRC-1. Multiple TBP and TFBs have been proposed to participate in transcription of genes via recognition and recruitment of RNA polymerase to different classes of promoters.</p> <p>Results</p> <p>We attempted to knock out all six TBP and seven TFB genes in <it>Halobacterium </it>sp. NRC-1 using the <it>ura</it>3-based gene deletion system. Knockouts were obtained for six out of thirteen genes, <it>tbp</it>CDF and <it>tfb</it>ACG, indicating that they are not essential for cell viability under standard conditions. Screening of a population of 1,000 candidate mutants showed that genes which did not yield mutants contained less that 0.1% knockouts, strongly suggesting that they are essential. The transcriptomes of two mutants, Δ<it>tbp</it>D and Δ<it>tfb</it>A, were compared to the parental strain and showed coordinate down regulation of many genes. Over 500 out of 2,677 total genes were regulated in the Δ<it>tbp</it>D and Δ<it>tfb</it>A mutants with 363 regulated in both, indicating that over 10% of genes in both strains require the action of both TbpD and TfbA for normal transcription. Culturing studies on the Δ<it>tbp</it>D and Δ<it>tfb</it>A mutant strains showed them to grow more slowly than the wild-type at an elevated temperature, 49°C, and they showed reduced viability at 56°C, suggesting TbpD and TfbA are involved in the heat shock response. Alignment of TBP and TFB protein sequences suggested the expansion of the TBP gene family, especially in <it>Halobacterium </it>sp. NRC-1, and TFB gene family in representatives of five different genera of haloarchaea in which genome sequences are available.</p> <p>Conclusion</p> <p>Six of thirteen TBP and TFB genes of <it>Halobacterium </it>sp. NRC-1 are non-essential under standard growth conditions. TbpD and TfbA coordinate the expression of over 10% of the genes in the NRC-1 genome. The Δ<it>tbp</it>D and Δ<it>tfb</it>A mutant strains are temperature sensitive, possibly as a result of down regulation of heat shock genes. Sequence alignments suggest the existence of several families of TBP and TFB transcription factors in <it>Halobacterium </it>which may function in transcription of different classes of genes.</p

    Microarray Analysis in the Archaeon Halobacterium salinarum Strain R1

    Get PDF
    Background: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. Methodology/Principal Findings: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. Conclusion/Significance: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis

    The rise of consumer health wearables: promises and barriers

    Get PDF
    Will consumer wearable technology ever be adopted or accepted by the medical community? Patients and practitioners regularly use digital technology (e.g., thermometers and glucose monitors) to identify and discuss symptoms. In addition, a third of general practitioners in the United Kingdom report that patients arrive with suggestions for treatment based on online search results. However, consumer health wearables are predicted to become the next “Dr Google.” One in six (15%) consumers in the United States currently uses wearable technology, including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold this year, that number is predicted to grow to 110 million in 2018. As the line between consumer health wearables and medical devices begins to blur, it is now possible for a single wearable device to monitor a range of medical risk factors. Potentially, these devices could give patients direct access to personal analytics that can contribute to their health, facilitate preventive care, and aid in the management of ongoing illness. However, how this new wearable technology might best serve medicine remains unclea

    Diurnally Entrained Anticipatory Behavior in Archaea

    Get PDF
    By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature) on O2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime

    Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic

    Get PDF
    PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)—which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core—are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW–associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi–like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid

    Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for sister chromatid cohesion

    Get PDF
    The gene separation anxiety (san) encodes Naa50/San, a N-terminal acetyltransferase required for chromosome segregation during mitosis. Although highly conserved among higher eukaryotes, the mitotic function of this enzyme is still poorly understood. Naa50/San was originally proposed to be required for centromeric sister chromatid cohesion in Drosophila and human cells, yet, more recently, it was also suggested to be a negative regulator of microtubule polymerization through internal acetylation of beta Tubulin. We used genetic and biochemical approaches to clarify the function of Naa50/San during development. Our work suggests that Naa50/San is required during tissue proliferation for the correct interaction between the cohesin subunits Scc1 and Smc3. Our results also suggest a working model where Naa50/San N-terminally acetylates the nascent Scc1 polypeptide, and that this co-translational modification is subsequently required for the establishment and/or maintenance of sister chromatid cohesion

    Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis

    Get PDF
    Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis

    Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Get PDF
    BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment
    corecore