93 research outputs found

    Health status outcomes after spontaneous coronary artery dissection and comparison with other acute myocardial infarction: The VIRGO experience.

    Get PDF
    Data on health status outcomes after spontaneous coronary artery dissection (SCAD) are limited. Using the Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients (VIRGO) study we compared patients with SCAD and other acute myocardial infarction (AMI) at presentation (baseline), 1-month, and-12 months using standardized health status instruments. Among 3572 AMI patients ≤ 55 years, 67 had SCAD. SCAD patients were younger (median age (IQR) 45 (40.5-51) years vs. 48 (44-52) in other AMI, p = 0.003), more often female (92.5% vs. 66.6%), have college education (73.1% vs. 51.7%) and household income >$100,000 (43.3% vs. 17.7% (All p<0.001). SCAD patients at baseline had higher mean ± SD Short Form-12 [SF-12] physical component scores [PCS] (48.7±10.2 vs. 43.8±12.1, p<0.001) and mental component scores [MCS] (49.6±12.4 vs. 45.4±12.5, p = 0.008), and at 12-months [PCS (50.1±9.0 vs. 44.3±12.3, p<0.001) and MCS (53±10.1 vs 50.2±11.0, p = 0.045)]. The Euro-Quality of Life Scale [EQ-5D] VAS and EQ-5D index scores were similar at baseline, but higher at 12-months for SCAD (EQ-5D VAS: 82.2±10.2 vs. 72.3±21.0, p<0.001; EQ-5D index scores; 90.2±15.3 vs. 83.7±19.8, p = 0.012). SCAD patients had better baseline Seattle Angina Questionnaire [SAQ] physical limitation (88.8±20.1 vs. 81.2±25.4, p = 0.017). At 12-months SCAD patients had better physical limitation (98.0±8.5 vs. 91.4±18.8, p = 0.007), angina frequency (96.4±8.8 vs. 91.3±16.8, p = 0.018) and quality of life scores (80.7±14.7 vs 72.2±23.2, p = 0.005). Magnitude of change in health status from baseline to 12-months was not statistically different between the groups. After adjustment for time and comorbidities there remained no difference in most health status outcomes. SCAD patients fare marginally better than other AMI patients on most health status instruments and have similar 12-month health status recovery. Better pre-event health status suggests a need to modify exercise prescriptions and cardiac rehabilitation protocols to better assist this physically active population to recover.The VIRGO study was supported by a 4-year National Heart, Lung, and Blood Institute grant [number 5R01HL081153). IMJOVEN was supported in Spain by grant PI 081614 from the Fondo de Investigaciones Sanitarias del Instituto Carlos III, Ministry of Science and Technology, and additional funds from the Centro Nacional de Investigaciones Cardiovasculares (CNIC).S

    Quantitative Analysis and Diagnostic Significance of Methylated SLC19A3 DNA in the Plasma of Breast and Gastric Cancer Patients

    Get PDF
    Background: Previously, we have examined the methylation status of SLC19A3 (solute carrier family 19, member 3) promoter and found that SLC19A3 was epigenetically down-regulated in gastric cancer. Here, we aim to develop a new biomarker for cancer diagnosis using methylated SLC19A3 DNA in plasma. Methodology/Principal Findings: SLC19A3 gene expression was examined by RT-qPCR. Methylation status of SLC19A3 promoter was evaluated by methylation-specific qPCR. SLC19A3 expression was significantly down-regulated in 80% (12/15) of breast tumors (P<0.005). Breast tumors had significant increase in methylation percentage when compared to adjacent non-tumor tissues (P<0.005). A robust and simple methylation-sensitive restriction enzyme digestion and real-time quantitative PCR (MSRED-qPCR) was developed to quantify SLC19A3 DNA methylation in plasma. We validated this biomarker in an independent validation cohort of 165 case-control plasma including 60 breast cancer, 45 gastric cancer patients and 60 healthy subjects. Plasma SLC19A3 methylated DNA level was effective in differentiating both breast and gastric cancer from healthy subjects. We further validated this biomarker in another independent blinded cohort of 78 plasma including 38 breast cancer, 20 gastric cancer patients and 20 healthy subjects. The positive predictive values for breast and gastric cancer were 90% and 85%, respectively. The negative predictive value of this biomarker was 85%. Elevated level in plasma has been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS) cases was 100%. Conclusions: These results suggested that aberrant SLC19A3 promoter hypermethylation in plasma may be a novel biomarker for breast and gastric cancer diagnosis. © 2011 Ng et al.published_or_final_versio

    A systematic review of the effectiveness of qigong exercise in supportive cancer care

    Get PDF
    PURPOSE: Qigong as a complementary and alternative modality of traditional Chinese medicine is often used by cancer patients to manage their symptoms. The aim of this systematic review is to critically evaluate the effectiveness of qigong exercise in cancer care. METHODS: Thirteen databases were searched from their inceptions through November 2010. All controlled clinical trials of qigong exercise among cancer patients were included. The strength of the evidence was evaluated for all included studies using the Oxford Centre for Evidence-based Medicine Levels of Evidence. The validity of randomized controlled trials (RCTs) was also evaluated using the Jadad Scale. RESULTS: Twenty-three studies including eight RCTs and fifteen non-randomized controlled clinical trials (CCTs) were identified. The effects of qigong on physical and psychosocial outcomes were examined in 14 studies and the effects on biomedical outcomes were examined in 15 studies. For physical and psychosocial outcomes, it is difficult to draw a conclusion due to heterogeneity of outcome measures and variability of the results in the included studies. Among reviewed studies on biomedical outcomes, a consistent tendency appears to emerge which suggests that the patients treated with qigong exercise in combination with conventional methods had significant improvement in immune function than the patients treated with conventional methods alone. CONCLUSIONS: Due to high risk of bias and methodological problems in the majority of included studies, it is still too early to draw conclusive statements. Further vigorously designed large-scale RCTs with validated outcome measures are needed.published_or_final_versio

    Role of the Transcriptional Corepressor Bcor in Embryonic Stem Cell Differentiation and Early Embryonic Development

    Get PDF
    Bcor (BCL6 corepressor) is a widely expressed gene that is mutated in patients with X-linked Oculofaciocardiodental (OFCD) syndrome. BCOR regulates gene expression in association with a complex of proteins capable of epigenetic modification of chromatin. These include Polycomb group (PcG) proteins, Skp-Cullin-F-box (SCF) ubiquitin ligase components and a Jumonji C (Jmjc) domain containing histone demethylase. To model OFCD in mice and dissect the role of Bcor in development we have characterized two loss of function Bcor alleles. We find that Bcor loss of function results in a strong parent-of-origin effect, most likely indicating a requirement for Bcor in extraembryonic development. Using Bcor loss of function embryonic stem (ES) cells and in vitro differentiation assays, we demonstrate that Bcor plays a role in the regulation of gene expression very early in the differentiation of ES cells into ectoderm, mesoderm and downstream hematopoietic lineages. Normal expression of affected genes (Oct3/4, Nanog, Fgf5, Bmp4, Brachyury and Flk1) is restored upon re-expression of Bcor. Consistent with these ES cell results, chimeric animals generated with the same loss of function Bcor alleles show a low contribution to B and T cells and erythrocytes and have kinked and shortened tails, consistent with reduced Brachyury expression. Together these results suggest that Bcor plays a role in differentiation of multiple tissue lineages during early embryonic development

    Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Get PDF
    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H[subscript 2]O-based fluid and a D[subscript 2]O-based fluid. Rapid exchange of intracellular H[subscript 2]O for D[subscript 2]O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Center for Cell Division Process Grant P50GM6876)National Institutes of Health (U.S.) (Contract R01CA170592)United States. Army Research Office (Institute for Collaborate Biotechnologies Contract W911NF-09-D-0001

    Inflammation Aggravates Disease Severity in Marfan Syndrome Patients

    Get PDF
    BACKGROUND: Marfan syndrome (MFS) is a pleiotropic genetic disorder with major features in cardiovascular, ocular and skeletal systems, associated with large clinical variability. Numerous studies reveal an involvement of TGF-beta signaling. However, the contribution of tissue inflammation is not addressed so far. METHODOLOGY/PRINCIPAL FINDINGS: Here we showed that both TGF-beta and inflammation are up-regulated in patients with MFS. We analyzed transcriptome-wide gene expression in 55 MFS patients using Affymetrix Human Exon 1.0 ST Array and levels of TGF-beta and various cytokines in their plasma. Within our MFS population, increased plasma levels of TGF-beta were found especially in MFS patients with aortic root dilatation (124 pg/ml), when compared to MFS patients with normal aorta (10 pg/ml; p = 8x10(-6), 95% CI: 70-159 pg/ml). Interestingly, our microarray data show that increased expression of inflammatory genes was associated with major clinical features within the MFS patients group; namely severity of the aortic root dilatation (HLA-DRB1 and HLA-DRB5 genes; r = 0.56 for both; False Discovery Rate(FDR) = 0%), ocular lens dislocation (RAET1L, CCL19 and HLA-DQB2; Fold Change (FC) = 1.8; 1.4; 1.5, FDR = 0%) and specific skeletal features (HLA-DRB1, HLA-DRB5, GZMK; FC = 8.8, 7.1, 1.3; FDR = 0%). Patients with progressive aortic disease had higher levels of Macrophage Colony Stimulating Factor (M-CSF) in blood. When comparing MFS aortic root vessel wall with non-MFS aortic root, increased numbers of CD4+ T-cells were found in the media (p = 0.02) and increased number of CD8+ T-cells (p = 0.003) in the adventitia of the MFS patients. CONCLUSION/SIGNIFICANCE: In conclusion, our results imply a modifying role of inflammation in MFS. Inflammation might be a novel therapeutic target in these patients

    Multiparameter Phospho-Flow Analysis of Lymphocytes in Early Rheumatoid Arthritis: Implications for Diagnosis and Monitoring Drug Therapy

    Get PDF
    The precise mechanisms involved in the initiation and progression of rheumatoid arthritis (RA) are not known. Early stages of RA often have non-specific symptoms, delaying diagnosis and therapy. Additionally, there are currently no established means to predict clinical responsiveness to therapy. Immune cell activation is a critical component therefore we examined the cellular activation of peripheral blood mononuclear cells (PBMCs) in the early stages of RA, in order to develop a novel diagnostic modality.PBMCs were isolated from individuals diagnosed with early RA (ERA) (n = 38), longstanding RA (n = 10), osteoarthritis (OA) (n = 19) and from healthy individuals (n = 10). PBMCs were examined for activation of 15 signaling effectors, using phosphorylation status as a measure of activation in immunophenotyped cells, by flow cytometry (phospho-flow). CD3+CD4+, CD3+CD8+ and CD20+ cells isolated from patients with ERA, RA and OA exhibited activation of multiple phospho-epitopes. ERA patient PBMCs showed a bias towards phosphorylation-activation in the CD4+ and CD20+ compartments compared to OA PBMCs, where phospho-activation was primarily observed in CD8+ cells. The ratio of phospho (p)-AKT/p-p38 was significantly elevated in patients with ERA and may have diagnostic potential. The mean fluorescent intensity (MFI) levels for p-AKT and p-H3 in CD4+, CD8+ and CD20+ T cells correlated directly with physician global assessment scores (MDGA) and DAS (disease activity score). Stratification by medications revealed that patients receiving leflunomide, systemic steroids or anti-TNF therapy had significant reductions in phospho-specific activation compared with patients not receiving these therapies. Correlative trends between medication-associated reductions in the levels of phosphorylation of specific signaling effectors and lower disease activity were observed.Phospho-flow analysis identified phosphorylation-activation of specific signaling effectors in the PB from patients with ERA. Notably, phosphorylation of these signaling effectors did not distinguish ERA from late RA, suggesting that the activation status of discrete cell populations is already established early in disease. However, when the ratio of MFI values for p-AKT and p-p38 is >1.5, there is a high likelihood of having a diagnosis of RA. Our results suggest that longitudinal sampling of patients undergoing therapy may result in phospho-signatures that are predictive of drug responsiveness

    El análisis de 52 genomas fúngicos aclara la evolución de los estilos de vida de los Agaricales

    Get PDF
    1 p.Los Agaricomycetes han desarrollado complejas maquinarias enzimáticas que les permiten descomponer los diferentes polímeros vegetales, incluida la lignina. Entre ellos, los Agaricales saprótrofos se caracterizan por su diversidad de hábitats y estilos de vida. El análisis de 52 genomas de Agaricomycetes aquí realizado revela que los Agaricales poseen una gran diversidad de enzimas hidrolíticas y oxidativas para la descomposición de la lignocelulosa. En base a las familias de genes con mayor velocidad evolutiva (dominios de unión a celulosa, glicosil hidrolasa GH43, monooxigenasas líticas de polisacáridos, peroxidasas ligninolíticas, enzimas de la superfamilia de glucosa-metanol-colina oxidasas/deshidrogenasas, lacasas y peroxigenasas), reconstruimos los estilos de vida de los ancestros que dieron lugar a los actuales Agaricomycetes degradadores de lignocelulosa. Los cambios en el conjunto de herramientas enzimáticas de los Agaricales ancestrales se correlacionaron con la evolución de su capacidad para crecer no solo sobre madera, sino también sobre hojarasca de bosques y madera en descomposición, siendo los descomponedores de la hojarasca de praderas el grupo ecofisiológico más reciente. En este contexto, las anteriores familias de enzimas se analizaron en relación con la diversidad de estilos de vida. Las peroxidasas aparecen como un componente central del set enzimático de los Agaricomycetes saprotrófos, consistente con su papel esencial en la degradación de la lignina y sus altas tasas evolutivas. Esto incluye no solo expansiones/pérdidas de genes de peroxidasas, sino también la presencia generalizada en Agaricales de nuevos tipos de peroxidasas que no se encuentran en Polyporales degradadores de madera, y en otros órdenes de Agaricomycetes.Projectos/contratos BIO2017-86559-R, BIO2015-73697-JIN, AGL2014-55971-R, NSF-grant-1457721, CEFOX-031B0831B, PIE-201620E081, ANR-11-LABX-0002-01, US-DOE-DE-AC02-05CH11231Peer reviewe

    Lifestyle Evolution And Peroxidase Diversity In Agaricales As Revealed By Comparative Genomics

    Get PDF
    Descripción de 1 páginas de la comunicación oral presentada en Oxizymes2022 10th edition of the international “Oxizymes” meeting. Siena, Italy, July 5-8, 2022Basidiomycetes of the class Agaricomycetes have developed complex enzymatic machineries that allow them to decompose plant polymers, including lignin. Within this group, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles in comparison with fungi from other orders. With the aim of shedding light on the evolution of lignocellulose-decaying lifestyles in Agaricales we conducted a comparative analysis of 52 Agaricomycetes genomes [1]. This study revealed that Agaricales possess a large diversity of hydrolytic and oxidative enzymes. Surprisingly, computer-assisted gene-family evolution analysis of these enzymes revealed that a few oxidoreductase families showed significantly higher evolutionary rates. Based on these gene families we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. According to this, we determined that changes in the oxidative enzymatic toolkit of ancestral Agaricales correlate with the evolution of their ability to grow not only on wood, but also on leaf and grass litter and decayed wood. In this context, the aboye families were analyzed and special attention was paid to peroxidases as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes responsible for lignin degradation. We identified a widespread presence of new ligninolytic peroxidase types in Agaricales, some of them not previously identified in this order, and others also not found in woodrottingPolyporales and other orders of Agaricomycetes. Peroxidase evolution was analyzed in Agaricomycetes by ancestral sequence reconstruction and several major evolutionary pathways were unveiled. The study of the newly identified peroxidases will provide insight into their role in the lignin degradation process. In fact, these studies have already been initiated with the expression and characterization of the first lignin peroxidase identified in Agaricales. [1] Ruiz-Dueñas FJ, Barrasa JM, Sánchez-García M, Camarero S, Miyauchi S, Serrano A, et al., 2021, Mol Biol Evol, 38, 1428-1446.Projects/contracts BI02017-86559-R, BI02015-7369-JIN, AGL2014-55971-R, NSFgrant-1457721 , CEFOX-031 B0831 S, PIE-201620E081 , ANR-11-LABX-0002-01 , US-DOE-DE-AC02-05CH11231N
    corecore