498 research outputs found

    First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory

    Get PDF
    A Compton polarimeter has been installed in Hall A at Jefferson Laboratory. This letter reports on the first electron beam polarization measurements performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an average current of 40 Ό\muA. The heart of this device is a Fabry-Perot cavity which increased the luminosity for Compton scattering in the interaction region so much that a 1.4% statistical accuracy could be obtained within one hour, with a 3.3% total error

    New pixelized Micromegas detector for the COMPASS experiment

    Get PDF
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for the present detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Studies were done with the present detectors moved in the beam, and two first pixelized prototypes are being tested with muon and hadron beams in real conditions at COMPASS. We present here this new project and report on two series of tests, with old detectors moved into the beam and with pixelized prototypes operated in real data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece Minor details added and language corrections don

    Common peroneal nerve palsy complicating knee dislocation and bicruciate ligaments tears

    Get PDF
    SummaryIntroductionThe occurrence rate of common peroneal nerve (CPN) palsy associated with knee dislocation or bicruciate ligament injury ranges from 10 to 40%. The present study sought first to describe the anatomic lesions encountered and their associated prognoses and second to recommend adequate treatment strategy based on a prospective multicenter observational series of knee ligament trauma cases.Material and methodsTwelve out of 67 knees treated for dislocation or bicruciate lesion presented associated CPN palsy: two females, 10 males; mean age, 32 years. Four sports injuries, three traffic accidents and five other etiologies led to seven complete dislocations and five bicruciate ruptures. Four cases involved associated popliteal artery laceration ischemia; one of the dislocations was open. Paralysis was total in eight cases and partial in four. There were two complete ruptures, three contusions with CPN in continuity stretch lesions and three macroscopically normal aspects.ResultsAt a minimum 1 year's follow-up, regardless of the initial surgical technique performed, recovery was complete in six cases, partial (in terms of motor function) in one and absent in five. Without specific CPN surgery, spontaneous recovery was partial in one case, complete in two and absent in none. Following simple emergency or secondary neurolysis, remission was total in four cases and absent in one. Three nerve grafts were all associated with non-recovery.DiscussionThe present results agree with literature findings. Palsy rates varied with trauma circumstances and departmental recruitment. Neurologic impairment was commensurate to ligamentary damages. The anatomic status of the CPN, subjected to violent traction by dislocation, was the most significant prognostic factor for neurologic recovery. In about 25% of dislocations, contusion-elongation over several centimeters was associated with as poor a prognosis as total rupture. CPN neurolysis is recommended when early clinical and EMG recovery fails to progress and/or in case of lateral ligamentary reconstruction. Possible peripheral nerve impairment needs to be included in the overall functional assessment of treatment for severe ligaments injuries and knee dislocation.Level of evidenceLevel IV, prospective study

    The relation between bystanders' behavioral reactivity to distress and later helping behavior during a violent conflict in virtual reality

    Get PDF
    The occurrence of helping behavior is thought to be automatically triggered by reflexive reactions and promoted by intuitive decisions. Here, we studied whether reflexive reactions to an emergency situation are associated with later helping behavior in a different situation, a violent conflict. First, 29 male supporters of F.C. Barcelona performed a cued-reaction time task with a low and high cognitive load manipulation, to tap into reflexive and reflective processes respectively, during the observation of an emergency. Next, participants entered a bar in Virtual Reality and had a conversation with a virtual fellow supporter. During this conversation, a virtual Real Madrid supporter entered and started an aggressive argument with the fellow supporter that escalated into a physical fight. Verbal and physical interventions of the participant served as measures of helping behavior. Results showed that faster responses to an emergency situation during low, but not during high cognitive load, were associated with more interventions during the violent conflict. However, a tendency to describe the decision to act during the violent conflict as intuitive and reflex-like was related to more interventions. Further analyses revealed that a disposition to experience sympathy, other-oriented feelings during distressful situations, was related to self-reported intuitive decision-making, a reduced distance to the perpetrator, and higher in the intervening participants. Taken together, these results shed new light on helping behavior and are consistent with the notion of a motivational system in which the act of helping is dependent on a complex interplay between intuitive, reflexive and deliberate, reflective processes

    New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    Full text link
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very good performance. We present here the project and report on its status, in particular the performance of large size prototypes with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa

    Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion

    Get PDF
    Persistent rotatory knee laxity is increasingly recognized as a common finding after anterior cruciate ligament (ACL) reconstruction. While the reasons behind rotator knee laxity are multifactorial, the impact of the anterolateral knee structures is significant. As such, substantial focus has been directed toward better understanding these structures, including their anatomy, biomechanics, in vivo function, injury patterns, and the ideal procedures with which to address any rotatory knee laxity that results from damage to these structures. However, the complexity of lateral knee anatomy, varying dissection techniques, differing specimen preparation methods, inconsistent sectioning techniques in biomechanical studies, and confusing terminology have led to discrepancies in published studies on the topic. Furthermore, anatomical and functional descriptions have varied widely. As such, we have assembled a panel of expert surgeons and scientists to discuss the roles of the anterolateral structures in rotatory knee laxity, the healing potential of these structures, the most appropriate procedures to address rotatory knee laxity, and the indications for these procedures. In this round table discussion, KSSTA Editor-in-Chief Professor JĂłn Karlsson poses a variety of relevant and timely questions, and experts from around the world provide answers based on their personal experiences, scientific study, and interpretations of the literature. Level of evidence V

    Fast readout of the COMPASS RICH CsI-MWPC photon chambers

    Get PDF
    Abstract A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with "slow" signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∌3 ÎŒs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5–6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficient data taking at higher trigger rate

    A Cryogenic High-Reynolds Turbulence Experiment at CERN

    Get PDF
    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively equipped with "hot" wire micro-anemometers, acoustic scattering vorticity measurements and a large-bandwidth data acquisition system

    Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences

    Get PDF
    Abstract Traits have become a crucial part of ecological and evolutionary sciences, helping researchers understand the function of an organism's morphology, physiology, growth and life history, with effects on fitness, behaviour, interactions with the environment and ecosystem processes. However, measuring, compiling and analysing trait data comes with data‐scientific challenges. We offer 10 (mostly) simple rules, with some detailed extensions, as a guide in making critical decisions that consider the entire life cycle of trait data. This article is particularly motivated by its last rule, that is, to propagate good practice. It has the intention of bringing awareness of how data on the traits of organisms can be collected and managed for reuse by the research community. Trait observations are relevant to a broad interdisciplinary community of field biologists, synthesis ecologists, evolutionary biologists, computer scientists and database managers. We hope these basic guidelines can be useful as a starter for active communication in disseminating such integrative knowledge and in how to make trait data future‐proof. We invite the scientific community to participate in this effort at http://opentraits.org/best‐practices.html

    Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From these data, for the first time, the strange electric form factor of the nucleon G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat) +/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042 (stat) +/- 0.010 (syst), consistent with zero
    • 

    corecore