3,162 research outputs found

    Neonatal jaundice and its management: knowledge, attitude and practice of community health workers in Nigeria

    Get PDF
    BACKGROUND: Neonatal jaundice (NNJ) is still a leading cause of preventable brain damage, physical and mental handicap, and early death among infants in many communities. Greater awareness is needed among all health workers. The objective of the study was to assess the knowledge of primary health care workers about the description, causes, effective treatment, and sequelae of NNJ. METHODS: The setting was a local government area i.e. an administrative district within the south-western part of Nigeria. Community health workers in this area were interviewed by means of a self-administered questionnaire which focused on awareness and knowledge of neonatal jaundice and its causes, treatment and complications. RESULTS: Sixty-six community health workers participated in the survey and male-to-female ratio was 1:5. Their work experience averaged 13.5 (SD 12.7) years. Only 51.5% of the respondents gave a correct definition of NNJ. 75.8 % knew how to examine for this condition while 84.9 % knew at least two of its major causes in our environment. Also, only 54.5 % had adequate knowledge of effective treatment namely, phototherapy and exchange blood transfusion. Rather than referring affected babies to hospitals for proper management, 13.4 %, 10.4 % and 3 % of the participants would treat with ineffective drugs, natural phototherapy and herbal remedies respectively. None of the participants knew any effective means of prevention. CONCLUSION: Primary health care workers may have inadequate knowledge and misconceptions on NNJ which must be addressed concertedly before the impact of the condition on child health and well-being can be significantly reduced. We recommend regular training workshops and seminars for this purpose

    Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system

    Get PDF
    This paper presents a methodology for conducting a 3-D static fracture analysis with applications to a gas turbine compressor blade. An open crack model is considered in the study and crack-tip driving parameters are estimated by using 3-D singular crack-tip elements in ANSYS. The static fracture analysis is verified with a special purpose fracture code (FRANC3D). Once the crack front is perfectly defined and validated, a free vibration study is conducted by analyzing the natural frequencies and modeshapes for both a single blade and bladed disk system. Taking advantage of high performance computing resources, a high fidelity finite element model is considered in the parametric investigation. In the fracture simulation, the influence of the size of a single edged crack as well as the rotational velocity on fracture parameters (stress intensity factors and J-Integral) are evaluated. Results demonstrate that for the applied loading condition, a mixed mode crack propagation is expected. In the modal analysis study, increasing the depth of the crack leads to a decrease in the natural frequencies of both the single blade and bladed disk system, while increasing the rotational velocity increases the natural frequencies. The presence of a crack also leads to mode localization for all mode families, a phenomenon that cannot be captured by a single blade analysis.The authors gratefully acknowledge the support of the Qatar National Research Fund through Grant number NPRP 7-1153-2-432. The authors also thank Texas A&M at Qatar?s Advanced Scientific Computing (TASC) for access to the RAAD Supercomputer.Scopu

    Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle thermostatted systems

    Full text link
    The master equation approach to Lyapunov spectra for many-particle systems is applied to non-equilibrium thermostatted systems to discuss the conjugate pairing rule. We consider iso-kinetic thermostatted systems with a shear flow sustained by an external restriction, in which particle interactions are expressed as a Gaussian white randomness. Positive Lyapunov exponents are calculated by using the Fokker-Planck equation to describe the tangent vector dynamics. We introduce another Fokker-Planck equation to describe the time-reversed tangent vector dynamics, which allows us to calculate the negative Lyapunov exponents. Using the Lyapunov exponents provided by these two Fokker-Planck equations we show the conjugate pairing rule is satisfied for thermostatted systems with a shear flow in the thermodynamic limit. We also give an explicit form to connect the Lyapunov exponents with the time-correlation of the interaction matrix in a thermostatted system with a color field.Comment: 10 page

    Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disorder characterised by selective loss of motor neurons leading to fatal paralysis. Current therapeutic approaches are limited in their effectiveness. Substantial advances in understanding ALS disease mechanisms has come from the identification of pathogenic mutations in dominantly inherited familial ALS (FALS). We previously reported a coding mutation in D-amino acid oxidase (DAOR199W) associated with FALS. DAO metabolises D-serine, an essential co-agonist at the N-Methyl-D-aspartic acid glutamate receptor subtype (NMDAR). Using primary motor neuron cultures or motor neuron cell lines we demonstrated that expression of DAOR199W, promoted the formation of ubiquitinated protein aggregates, activated autophagy and increased apoptosis. The aim of this study was to characterise the effects of DAOR199W in vivo, using transgenic mice overexpressing DAOR199W. Marked abnormal motor features, e.g. kyphosis, were evident in mice expressing DAOR199W, which were associated with a significant loss (19%) of lumbar spinal cord motor neurons, analysed at 14 months. When separated by gender, this effect was greater in females (26%; p< 0.0132). In addition, we crossed the DAOR199W transgenic mouse line with the SOD1G93A mouse model of ALS to determine whether the effects of SOD1G93A were potentiated in the double transgenic line (DAOR199W/SOD1G93A). Although overall survival was not affected, onset of neurological signs was significantly earlier in female double transgenic animals than their female SOD1G93A littermates (125 days vs 131 days, P = 0.0239). In summary, some significant in vivo effects of DAOR199W on motor neuron function (i.e. kyphosis and loss of motor neurons) were detected which were most marked in females and could contribute to the earlier onset of neurological signs in double transgenic females compared to SOD1G93A littermates, highlighting the importance of recognizing gender effects present in animal models of ALS

    Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering

    Get PDF
    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product

    Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using gene co-expression analysis, researchers were able to predict clusters of genes with consistent functions that are relevant to cancer development and prognosis. We applied a weighted gene co-expression network (WGCN) analysis algorithm on glioblastoma multiforme (GBM) data obtained from the TCGA project and predicted a set of gene co-expression networks which are related to GBM prognosis.</p> <p>Methods</p> <p>We modified the Quasi-Clique Merger algorithm (QCM algorithm) into edge-covering Quasi-Clique Merger algorithm (eQCM) for mining weighted sub-network in WGCN. Each sub-network is considered a set of features to separate patients into two groups using K-means algorithm. Survival times of the two groups are compared using log-rank test and Kaplan-Meier curves. Simulations using random sets of genes are carried out to determine the thresholds for log-rank test p-values for network selection. Sub-networks with p-values less than their corresponding thresholds were further merged into clusters based on overlap ratios (>50%). The functions for each cluster are analyzed using gene ontology enrichment analysis.</p> <p>Results</p> <p>Using the eQCM algorithm, we identified 8,124 sub-networks in the WGCN, out of which 170 sub-networks show p-values less than their corresponding thresholds. They were then merged into 16 clusters.</p> <p>Conclusions</p> <p>We identified 16 gene clusters associated with GBM prognosis using the eQCM algorithm. Our results not only confirmed previous findings including the importance of cell cycle and immune response in GBM, but also suggested important epigenetic events in GBM development and prognosis.</p

    Self-reported pediatricians' management of the well-appearing young child with fever without a source: first survey in an European country in the anti-pneumococcal vaccine era

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies suggest a substantially reduced risk of invasive bacterial infection in children vaccinated with heptavalent pneumococcal conjugate vaccine (PCV). To investigate whether the introduction of PCV might affect clinical decision making, we conducted a cross-sectional survey aimed at Italian Pediatric physicians.</p> <p>Results</p> <p>The study included 348 (46.5%) primary care pediatricians; 251 (36.4%) hospital pediatricians, and 139 (20.1%) pediatric residents. In an hypothetical scenario, a well-appearing 12-month-old child with fever without source would be sent home with no therapy by 60.7% (419/690) of physicians if the child was not vaccinated with PCV. The proportion increased to 74.2% (512/690) if the child had received PCV (P < 0.0001). Also, physicians would obtain blood tests less frequently in the vaccinated than in unvaccinated children (139/690 [20.1%] <it>vs</it>. 205/690 [29.7%]; P < 0.0001), and started empiric antibiotic therapy less frequently (3.0% <it>vs</it>. 7.5%; P < 0.0001). In the hypothetical event that white blood cell count was 17,500/μL, a significantly lower proportion of physicians would ask for erythrocyte sedimentation rate (P < 0.017), C reactive protein (P < 0.0001), blood culture (P = 0.022), and urine analysis or dipstick (P = 0.028), if the child had received PCV. Only one third of participants routinely recommended PCV.</p> <p>Conclusion</p> <p>Our data suggest that implementation of educational programs regarding the proper management of the febrile child is needed.</p

    Chemical Contamination of Green Turtle (Chelonia mydas) Eggs in Peninsular Malaysia: Implications for Conservation and Public Health

    Get PDF
    BACKGROUND: Persistent organic pollutants (POPs)-such as organochlorine pesticides (OCPS), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)-and heavy metals have been reported in sea turtles at various stages of their life cycle. These chemicals can disrupt development and function of wildlife. Furthermore, in areas such as Peninsular Malaysia, where the human consumption of sea turtle eggs is prevalent, egg contamination may also have public health implications. OBJECTIVE: In the present study we investigated conservation and human health risks associated with the chemical contamination of green turtle (Chelonia mydas) eggs in Peninsular Malaysia. METHODS: Fifty-five C mydas eggs were collected from markets in Peninsular Malaysia and analyzed for POPs and heavy metals. We conducted screening risk assessments (SRAs) and calculated the percent of acceptable daily intake (ADI) for POPs and metals to assess conservation and human health risks associated with egg contamination. RESULTS: C mydas eggs were available in 9 of the 33 markets visited. These eggs came from seven nesting areas from as far away as Borneo Malaysia. SRAs indicated a significant risk to embryonic development associated with the observed arsenic concentrations. Furthermore, the concentrations of coplanar PCBs represented 3-300 times the ADI values set by the World Health Organization. CONCLUSIONS: The concentrations of POPs and heavy metals reported in C mydas eggs from markets in Peninsular Malaysia pose considerable risks to sea turtle conservation and human health

    Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics

    Get PDF
    The epidemic spread of infectious diseases is ubiquitous and often has a considerable impact on public health and economic wealth. The large variability in the spatio-temporal patterns of epidemics prohibits simple interventions and requires a detailed analysis of each epidemic with respect to its infectious agent and the corresponding routes of transmission. To facilitate this analysis, we introduce a mathematical framework which links epidemic patterns to the topology and dynamics of the underlying transmission network. The evolution, both in disease prevalence and transmission network topology, is derived from a closed set of partial differential equations for infections without allowing for recovery. The predictions are in excellent agreement with complementarily conducted agent-based simulations. The capacity of this new method is demonstrated in several case studies on HIV epidemics in synthetic populations: it allows us to monitor the evolution of contact behavior among healthy and infected individuals and the contributions of different disease stages to the spreading of the epidemic. This gives both direction to and a test bed for targeted intervention strategies for epidemic control. In conclusion, this mathematical framework provides a capable toolbox for the analysis of epidemics from first principles. This allows for fast, in silico modeling - and manipulation - of epidemics and is especially powerful if complemented with adequate empirical data for parameterization
    • …
    corecore