3,843 research outputs found

    The Density Profiles of Massive, Relaxed Galaxy Clusters. I. The Total Density Over Three Decades in Radius

    Get PDF
    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive, relaxed galaxy clusters with centrally-located brightest cluster galaxies (BCGs) at z=0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of ~3-3000 kpc. Lensing-derived mass profiles typically agree with independent X-ray estimates within ~15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated along the line of sight. The inner logarithmic slope gamma_tot of the total density profile measured over r/r200=0.003-0.03, where rho_tot ~ r^(-gamma_tot), is found to be nearly universal, with a mean = 1.16 +- 0.05 (random) +0.05-0.07 (systematic) and an intrinsic scatter of < 0.13 (68% confidence). This is further supported by the very homogeneous shape of the observed velocity dispersion profiles, obtained via Keck spectroscopy, which are mutually consistent after a simple scaling. Remarkably, this slope agrees closely with numerical simulations that contain only dark matter, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold dark matter is a better description of the total mass density at radii >~ 5-10 kpc than that of dark matter alone. Hydrodynamical simulations that include baryons, cooling, and feedback currently provide a poorer match. We discuss the significance of our findings for understanding the assembly of BCGs and cluster cores, particularly the influence of baryons on the inner DM halo. [abridged]Comment: Updated to matched the published version in Ap

    Marketers’ Use Of Alternative Front-Of-Package Nutrition Symbols: An Examination Of Effects On Product Evaluations

    Get PDF
    How front-of-package (FOP) nutrition icon systems affect product evaluations for more and less healthful objective nutrition profiles is a critical question facing food marketers, consumers, and the public health community. We propose a conceptually-based hierarchical continuum to guide predictions regarding the effectiveness of several FOP systems currently used in the marketplace. In Studies 1a and 1b, we compare the effects of a broad set of FOP icons on nutrition evaluations linked to health, accuracy of evaluations, and purchase intentions for a single product. Based on these findings, Studies 2 and 3 test the effects of two conceptually-different FOP icon systems in a retail laboratory in which consumers make comparative evaluations of multiple products at the retail shelf. While there are favorable effects of each system beyond control conditions with no FOP icons, results show that icons with an evaluative component that aid consumers’ interpretations generally provide greater benefits (particularly in product comparison contexts). We offer implications for consumer packaged goods marketers, retailers, and the public policy and consumer health communities

    Latin American Economic Integration

    Get PDF

    Latin American Economic Integration

    Get PDF

    Quantum Monte Carlo study of a magnetic-field-driven 2D superconductor-insulator transition

    Get PDF
    We numerically study the superconductor-insulator phase transition in a model disordered 2D superconductor as a function of applied magnetic field. The calculation involves quantum Monte Carlo calculations of the (2+1)D XY model in the presence of both disorder and magnetic field. The XY coupling is assumed to have the form -J\cos(\theta_i-\theta_j-A_{ij}), where A_{ij} has a mean of zero and a standard deviation \Delta A_{ij}. In a real system, such a model would be approximately realized by a 2D array of small Josephson-coupled grains with slight spatial disorder and a uniform applied magnetic field. The different values \Delta A_{ij} then corresponds to an applied field such that the average number of flux quanta per plaquette has various integer values N: larger N corresponds to larger \Delta A_{ij}. For any value of \Delta A_{ij}, there appears to be a critical coupling constant K_c(\Delta A_{ij})=\sqrt{[J/(2U)]_c}, where U is the charging energy, above which the system is a Mott insulator; there is also a corresponding critical conductivity \sigma^*(\Delta A_{ij}) at the transition. For \Delta A_{ij}=\infty, the order parameter of the transition is a renormalized coupling constant g. Using a numerical technique appropriate for disordered systems, we show that the transition at this value of \Delta A_{ij} takes place from an insulating (I) phase to a Bose glass (BG) phase, and that the dynamical critical exponent characterizing this transition is z \sim 1.3. By contrast, z=1 for this model at \Delta A_{ij}=0. We suggest that the superconductor to insulator transition is actually of this I to BG class at all nonzero \Delta A_{ij}'s, and we support this interpretation by both numerical evidence and an analytical argument based on the Harris criterion.Comment: 17 pages, 23 figures, accepted for publication in Phys. Rev.

    Stratospheric Data Analysis System (STRATAN)

    Get PDF
    A state of the art stratospheric analyses using a coupled stratosphere/troposphere data assimilation system is produced. These analyses can be applied to stratospheric studies of all types. Of importance to this effort is the application of the Stratospheric Data Analysis System (STRATAN) to constituent transport and chemistry problems

    Random pinning limits the size of membrane adhesion domains

    Full text link
    Theoretical models describing specific adhesion of membranes predict (for certain parameters) a macroscopic phase separation of bonds into adhesion domains. We show that this behavior is fundamentally altered if the membrane is pinned randomly due to, e.g., proteins that anchor the membrane to the cytoskeleton. Perturbations which locally restrict membrane height fluctuations induce quenched disorder of the random-field type. This rigorously prevents the formation of macroscopic adhesion domains following the Imry-Ma argument [Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975)]. Our prediction of random-field disorder follows from analytical calculations, and is strikingly confirmed in large-scale Monte Carlo simulations. These simulations are based on an efficient composite Monte Carlo move, whereby membrane height and bond degrees of freedom are updated simultaneously in a single move. The application of this move should prove rewarding for other systems also.Comment: revised and extended versio

    'The heart of what we do': policies on teaching, learning and assessment in the learning and skills sector

    Get PDF
    One of the stated aims of government policy in England is to put teaching, training,and learning at the heart of the learning and skills system. This paper provides a critical review of policies on teaching, learning and assessment in the learning and skills sector over the past five years. It draws upon data collected and analysed in the early stages of an ESRC-funded Teaching and Learning Research Programme project. Using evidence from policy sources, we argue that despite policy rhetoric about devolution of responsibility to the 'front line', the dominant 'images' that government has of putting teaching, learning and assessment at the heart of the Learning and Skills Sector involves a narrow concept of learning and skills; an idealisation of learner agency lacking an appreciation of the pivotal role of the learner/tutor relationship and a top-down view of change in which central government agencies are relied on to secure education standards
    • …
    corecore