3,177 research outputs found

    Spatial Competition: Roughening of an Experimental Interface

    Get PDF
    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader’s lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover’s growth morphology. In many plant communities, limited dispersal aggregates conspecific individuals1. In particular, most invasive plants are clonal and propagate vegetatively2, so that invaders initially cluster among residents3. Aggregation of conspecifics has consequences for population interactions. Individual plants usually compete at the nearest-neighbor scale4,5. When different species each aggregate spatially and interact locally, intraspecific competition will predominate within clusters, while interspecific competition will localize at the interface between clusters6,7,8. This interaction geometry implies that the advance versus extinction of an invasive species may depend on development and subsequent movement of a between-species interface9,10. An invading species’ local density declines from positive equilibrium to rarity across the width of an ecological interface11. As a competitively superior invader excludes the resident species within the interface width, the front is pushed forward. Dispersal limitation promotes spatially correlated invasive advance along the interface. These correlations, generated through lateral growth, invite application of the theory of kinetic roughening, a framework for identifying quantitative characteristics shared by different interface-growth processes12. Previous applications of the theory span materials science13, temporal pattern in parallel-computing14,15, and ecological invasion11,16. Kinetic roughening theory predicts power-law scaling relationships governing both the development and the equilibrium statistical structure of an invader-resident interface. Our analyses emphasize scaling of both the interface width and the relative position of the “front-runner,” the most advanced invader, a metric used at both local and regional scales17,18,19. Interestingly, the exponents of scaling relationships predicted by kinetic roughening sometimes identify an interface as a member of a particular universality class. That is, quite distinct local processes may exhibit the same dependence of interface roughening on time, and the equilibrium width may exhibit the same dependence on interface length; universality implies powerful generality13. Previously, we modeled the front produced when a dispersal limited, but competitively superior, invader advances across a habitat occupied by a resident species11,20. That model’s kinetic roughening belongs to the KPZ universality class, for Kardar-Parisi-Zhang12. We begin by analyzing spatial competition as a problem for kinetic roughening theory, and then report a field experiment testing the predictions. We let Dutch white clover (Trifolium repens) advance into plots of perennial ryegrass (Lolium perenne). We monitored the development of spatial correlations along the fronts, and estimated a series of power-law scaling relationships from roughened fronts of different lengths. The exponents implied by the observed scaling allowed us, in addition, to ask if the experimental interface belonged to the KPZ universality class12,13

    A quantitative analysis of measures of quality in science

    Get PDF
    Condensing the work of any academic scientist into a one-dimensional measure of scientific quality is a difficult problem. Here, we employ Bayesian statistics to analyze several different measures of quality. Specifically, we determine each measure's ability to discriminate between scientific authors. Using scaling arguments, we demonstrate that the best of these measures require approximately 50 papers to draw conclusions regarding long term scientific performance with usefully small statistical uncertainties. Further, the approach described here permits the value-free (i.e., statistical) comparison of scientists working in distinct areas of science.Comment: 11 pages, 8 figures, 4 table

    AVGS, AR and D for Satellites, ISS, the Moon, Mars and Beyond

    Get PDF
    With the continuous need to rotate crew and re-supply the International Space Station (ISS) and the desire to return humans to the Moon and for the first time, place humans on Mars, NASA must develop a more robust and highly reliable capability to perform Autonomous Rendezvous and Capture (AR&C) because, unlike the Apollo missions, NASA plans to send the entire crew to the Lunar or Martian surface and must be able to dock with the Orion spacecraft upon return. In 1997, NASA developed the Video Guidance Sensor (VGS) which was flown and tested on STS-87 and STS-95. In 2001, NASA designed and built a more enhanced version of the VGS, called the Advanced Video Guidance Sensor (AVGS). The AVGS offered significant technology improvements to the precursor VGS design. This paper will describe the AVGS as it was in the DART mission of 2005 and the Orbital Express mission of 2007. The paper will describe the capabilities and design concepts of the AVGS as it was flown on the DART 2005 Mission and the DARPA Orbital Express Mission slated to fly in 2007. The paper will cover the Flight Software, problems encountered, testing for Orbital Express and where NASA is going in the future

    Science Objectives and Early Results of the DEEP2 Redshift Survey

    Get PDF
    The DEIMOS spectrograph has now been installed on the Keck-II telescope and commissioning is nearly complete. The DEEP2 Redshift Survey, which will take approximately 120 nights at the Keck Observatory over a three year period and has been designed to utilize the power of DEIMOS, began in the summer of 2002. The multiplexing power and high efficiency of DEIMOS enables us to target 1000 faint galaxies per clear night. Our goal is to gather high-quality spectra of \~60,000 galaxies with z>0.75 in order to study the properties and large scale clustering of galaxies at z ~ 1. The survey will be executed at high spectral resolution, R=λ/Δλ≈5000R=\lambda/\Delta \lambda \approx 5000, allowing us to work between the bright OH sky emission lines and to infer linewidths for many of the target galaxies (for several thousand objects, we will obtain rotation curves as well). The linewidth data will facilitate the execution of the classical redshift-volume cosmological test, which can provide a precision measurement of the equation of state of the Universe. This talk reviews the project, summarizes our science goals and presents some early DEIMOS data.Comment: 12 pages, 5 figures, talk presented at SPIE conference, Aug. 200

    Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: Positioning of a highly mobile antigenic loop

    Get PDF
    Data from cryo-electron microscopy and X-ray crystallography have been combined to study the interactions of foot-and-mouth disease virus serotype C (FMDV-C) with a strongly neutralizing monoclonal antibody (mAb) SD6. The mAb SD6 binds to the long flexible GH-loop of viral protein 1 (VP1) which also binds to an integrin receptor. The structure of the virus-Fab complex was determined to 30 Å resolution using cryo-electron microscopy and image analysis. The known structure of FMDV-C, and of the SD6 Fab co-crystallized with a synthetic peptide corresponding to the GH-loop of VP1, were fitted to the cryo-electron microscope density map. The SD6 Fab is seen to project almost radially from the viral surface in an orientation which is only compatible with monovalent binding of the mAb. Even taking into account the mAb hinge and elbow flexibility, it is not possible to model bivalent binding without severely distorting the Fabs. The bound GH-loop is essentially in what has previously been termed the 'up' position in the best fit Fab orientation. The SD6 Fab interacts almost exclusively with the GH-loop of VP1, making very few other contacts with the viral capsid. The position and orientation of the SD6 Fab bound to FMDV-C is in accord with previous immunogenic data.Peer Reviewe
    • 

    corecore