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Spatial Competition: Roughening 
of an Experimental Interface
Andrew J. Allstadt1, Jonathan A. Newman2, Jonathan A. Walter3, G. Korniss4 & 
Thomas Caraco5

Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then 
concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread 
of a locally dispersing invader can become motion of an interface between the invading and resident 
species, and spatial competition will produce variation in the extent of invasive advance along the 
interface. Kinetic roughening theory offers a framework for quantifying the development of these 
fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal 
and spatial scaling relationships. For most clonal plants, advance should become spatially correlated 
along the interface, and width of the interface (where invader and resident compete directly) should 
increase as a power function of time. Once roughening equilibrates, interface width and the relative 
location of the most advanced invader should each scale with interface length. We tested these 
predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial 
correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface 
width and the most advanced invader’s lead scaled with front length. However, the scaling exponents 
differed from those predicted by recent simulation studies, likely due to clover’s growth morphology.

In many plant communities, limited dispersal aggregates conspecific individuals1. In particular, most invasive 
plants are clonal and propagate vegetatively2, so that invaders initially cluster among residents3. Aggregation 
of conspecifics has consequences for population interactions. Individual plants usually compete at the 
nearest-neighbor scale4,5. When different species each aggregate spatially and interact locally, intraspecific com-
petition will predominate within clusters, while interspecific competition will localize at the interface between 
clusters6–8. This interaction geometry implies that the advance versus extinction of an invasive species may depend 
on development and subsequent movement of a between-species interface9,10.

An invading species’ local density declines from positive equilibrium to rarity across the width of an ecolog-
ical interface11. As a competitively superior invader excludes the resident species within the interface width, the 
front is pushed forward. Dispersal limitation promotes spatially correlated invasive advance along the interface. 
These correlations, generated through lateral growth, invite application of the theory of kinetic roughening, a 
framework for identifying quantitative characteristics shared by different interface-growth processes12. Previous 
applications of the theory span materials science13, temporal pattern in parallel-computing14,15, and ecological 
invasion11,16.

Kinetic roughening theory predicts power-law scaling relationships governing both the development and 
the equilibrium statistical structure of an invader-resident interface. Our analyses emphasize scaling of both 
the interface width and the relative position of the “front-runner,” the most advanced invader, a metric used 
at both local and regional scales17–19. Interestingly, the exponents of scaling relationships predicted by kinetic 
roughening sometimes identify an interface as a member of a particular universality class. That is, quite distinct 
local processes may exhibit the same dependence of interface roughening on time, and the equilibrium width 
may exhibit the same dependence on interface length; universality implies powerful generality13. Previously, we 
modeled the front produced when a dispersal limited, but competitively superior, invader advances across a hab-
itat occupied by a resident species11,20. That model’s kinetic roughening belongs to the KPZ universality class, for 
Kardar-Parisi-Zhang12.
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We begin by analyzing spatial competition as a problem for kinetic roughening theory, and then report a field 
experiment testing the predictions. We let Dutch white clover (Trifolium repens) advance into plots of perennial 
ryegrass (Lolium perenne). We monitored the development of spatial correlations along the fronts, and estimated 
a series of power-law scaling relationships from roughened fronts of different lengths. The exponents implied by 
the observed scaling allowed us, in addition, to ask if the experimental interface belonged to the KPZ universality 
class12,13.

Local Dispersal and Interface Roughening
A dispersal-limited invader’s population typically begins as one or more clusters of individuals. Although the 
invader may have a competitive advantage, some small clusters will disappear due to demographic stochasticity. 
But clusters exceeding a critical size will continue to grow and displace the resident21. After a single cluster attains 
sufficient size, or after large clusters coalesce, we can treat the perimeter as a 1-dimensional front that has rough-
ened during advance22. Some invasions move perpendicularly to a road or shore; they can be treated as initially 
linear16. The dynamics of an ecological interface distinguishes it from an ecotone, since the latter implies a change 
in species composition due to abiotic factors that vary slowly relative to the timescale of population growth23,24.

Our analysis treats the invader as competitively superior to the resident. We assume that the ecological inter-
face, once roughening equilibrates, has an anisotropic fractal geometry25. This assumption has quantitative eco-
logical implications; both interface width and the front-runner’s lead should increase as a power function of the 
length of the advancing front20. When we analyze the front-runner’s location, correlated fluctuations along the 
interface are important, since traditional extreme-value statistics26,27, developed for independent random varia-
bles, do not apply28.

Figure 1 shows an interface from our field experiment. The extent of invasive growth along the interface clearly 
becomes more variable, i.e. roughens, with time. The plots also suggest correlated advance at nearby locations.

Interface Roughening: Development and Saturation.  After defining interface attributes for spatial 
competition between species, we describe development of a roughened interface. Then we address scaling rela-
tionships at equilibrium (after roughening “saturates”). Table 1 lists symbols we use.

Discrete (“individual-based”) models capture effects of nonlinearity and stochasticity inherent to a 
dispersal-limited invader’s dynamics at an ecological interface29,30. Therefore, we characterize invasion as a lattice 
process; our description applies across a variety of individual-based models for growth at an interface20,31. An 
Lx ×​ Ly rectangular lattice represents a habitat occupied by resident and invader species. Each lattice site is either 
occupied by the invader, occupied by the resident, or empty. Mortality of either species opens occupied sites. An 
empty site becomes occupied through propagation from a nearest-neighboring occupied site. The same dispersal 
limitation applies to both invader and resident, precluding a competition-colonization trade-off that permits 
species‘ coexistence32,33. Then the invader’s competitive superiority drives interface motion. If invader-resident 
competition is preemptive only, the invader has the lower mortality/propagation ratio34. If competition combines 
site preemption and interference competition, exclusion of the resident can require that the invader’s propagation 
rate be great enough to overcome the combined effect of resident propagation and increased mortality due to 
resident interference35.

Suppose that the invader initially occupies a few vertical columns at the left edge of the lattice; all other sites 
are occupied by the resident or open. Invasive advance occurs in the x-direction. Importantly, the dispersal con-
straint permits both forward and lateral growth. The former pushes the front, and the latter, at advanced heights, 
generates spatial correlation along the front12,13.

We let L ≡​ Ly, interface length (hence, front length). At time t, hy(t) is the location of the most advanced 
(right-most) invader in row y; y =​ 1, 2, …​, L. The front’s average location is the mean height among rows, 
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Figure 1.  White clover (T. repens, black area) advancing into perennial ryegrass (L. perenne), from 
photographs taken during experiment. Interface length L ≡​ Ly =​ 16 m. June (left), August (center) and October 
(right) 2010 shown. The interface advances, left to right, and roughens; neighboring heights suggest spatial 
correlation.
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= ∑h t h t L( ) ( )/y y . We take longitudinal system size Lx as sufficiently large that it does not affect population 
processes.

We define the width of the interface via roughness:
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Roughness w2(L, t) itself varies stochastically, and we represent its expectation (averaged over realizations of 
intrinsic noise) at time t by 〈​w2(L, t)〉​. We take =w w L t( , )2  as width of the front, the typical extent of the 
interface parallel to the direction of advance. Figure 2 diagrams a between-species interface and shows the width 
about the invader’s average incursion h t( ).

The development of spatially correlated interface heights underlies the power-law scaling we address. These 
scaling relationships do not, in general, depend on details of the local growth dynamics25. That is, despite var-
iation in demographic details among different invader-resident interactions, the same qualitative scaling pat-
terns should emerge16,20. Spatially correlated heights imply that the interface should equilibrate as a statistically 
self-affine fractal; this structure produces ecologically interesting scaling laws. A roughened, self-affine inter-
face has a width w(L), where L is front length. Suppose that we increase length according to L→​kL. Then inter-
face width must be re-scaled according to w→​kαw to preserve statistical invariance (“look the same” at different 
scales). Length and width must be increased by different factors, and the transformation has a power-law form. 
Numerical calibration of the scaling laws can, of course, differ across species and environments.

Symbols Definitions

Lx, Ly(=​L) Lattice size (L =​ interface length =​ front length)

hy(t) Rightmost invader in row y at time t

h t( ) Mean of hy(t) (the average is taken across all rows y)

hmax(t) Rightmost invader at time t, front-runner

∆ = −t h t h t( ) ( ) ( )max max Distance from front-runner to mean of front

〈​w2〉​ Mean squared interface width

ξ(t) Correlation length along interface

t× Crossover time, where w2 equilibrates

α Roughness exponent

β Growth exponent

z Dynamic exponent

ρt(h) Mean invader density at height h(t)

Table 1.   Definitions of variables.

Figure 2.  Schematic plot of the width (w) and the extreme advance (Δmax) relative to the mean front 
position h( ) in a rough front. For illustration, correlation length ξ is also indicated. Dark: invader, medium: 
resident, and white: open.
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Interface Development.  As the invader begins to advance, the interface starts to roughen, and invader 
heights hy(t) become dependent random variables. A single correlation length ξ(t) develops along the interface 
(Fig. 2). Correlation length initially increases with time according to the power-law scaling ξ(t) ~ t1/z; z is called 
the dynamic exponent13,36. Once ξ(t) spans the length L of the interface, “crossover” occurs. The interface contin-
ues to advance, but roughening has reached statistical equilibrium (roughening “saturates” at crossover)13. The 
duration of interface development, termed crossover time t×, increases with interface length; the scaling is t× ~ Lz. 
The development of interface width offers a more useful ecological prediction. Prior to saturation, interface width 
w expands with time according to w ~ tβ. β (β >​ 0) is called the growth exponent.

The height-height correlation function (Pearson correlation) is:

= − − −+G l h t h t h t h t h t h t( ) ( ( ) ( )) ( ( ) ( )) / ( ( ) ( ))
(2)t y l y y y y

1/2 2 1/2

where the averages are taken across rows y. Gt(l) indicates correlation length ξ(t) along the interface; height-height 
correlation should decline as distance l between rows increases.

We use two statistics to monitor roughening associated with increasing correlation length along a developing 
interface. Each combines results from windows of length l <​ ξ(t). The local width wt(l) averages interface widths 
from an ensemble of portions of the interface, each of length l. The local width is given by:

= −w l h t h y t( ) ( ( ) ( , ))
(3)t y l y

2 1/2

where h y t( , )l  is the mean height in the local window of length l.
Second, the height-difference correlation function, at time t >​ 0, is given by:

= − .+C l h t h t( ) ( ( ) ( ))
(4)t y l y y

2 1/2

Both wt(l) and Ct(l) are averaged across all rows y. For l <​ ξ(t), both wt(l) and Ct(l) exhibit power-law scal-
ing over distances along the interface: wt(l), Ct(l) ~ lα. α (α >​ 0) is the roughness exponent, and characterizes 
the fractal nature of the interface13,37. As the interface roughens with time, the correlation distance ξ increases. 
Consequently, the linear dependence of ln wt(l) and ln Ct(l) on ln l, with slope α, should extend to greater lengths 
l along the interface, until saturation.

The Saturated Interface.  After crossover (t >​ t×), steady-state properties of the interface depend on 
its length L13,38. Interface width w scales with interface length according to 〈​w2(L, ∞​)〉​ ~ L2α; interface width 
increases as a power function of its length, according to the roughness exponent α.

Note that we do not predict roughness per se, but ask how interface roughness changes as we increase inter-
face length. Power-law scaling for 〈​w2(L, ∞​)〉​ permits us to ask novel questions about invasive spatial growth. 
Cannas et al.16 hypothesize that life-history variation among invading tree species might influence the roughness  
exponent. Our analysis emphasizes how the expected location of the invader’s extreme advance depends on the 
scaling of roughness with interface length.

Scaling and the Front-Runner.  Consider the maximal invasive advance, the front-runner’s position. At 
time t we locate the front-runner at hmax(t) =​ maxy{hy(t)}. Given mean interface height h L t( , ), the invader’s max-
imal relative advance at time t is ∆ = −L t h t h L t( , ) ( ) ( , )max max . We assume that roughening equilibrates before 
considering the scaling of the expected lead 〈​Δ​max〉​L; note dependence on interface length L.

The probability density of the front-runner’s excess Δ​max(L, t) has been obtained analytically28,36. For broad 
classes of dispersal-limited stochastic growth models, the scaled variable Δ​max/〈​Δ​max〉​ has an Airy probability 
density, and the steady-state average excess of the front-runner over the mean height scales with interface length 
exactly as does the width. That is, 〈​Δ​max〉​L ~ Lα. Furthermore, we can infer the size of the extremes for an inter-
face of linear size L with estimates obtained in limited observation windows with size l. We have: 〈​Δ​max(L)〉​ ≈​  
〈​Δ​max(l)〉​kα, where k =​ (L/l), by the properties of a self-affine interface. Table 2 collects the various scaling rela-
tionships we study.

Scaling Exponents and KPZ Universality.  In general, the scaling exponents of a roughened interface 
are dependent: α =​ βz12. Dependence arises from the fractal structure of the interface; that is, we assume that the 
interface equilibrates as a stochastically self-affine fractal13.

For roughened fronts in the KPZ universality class, the scaling-law exponents take particular values: α =​ 1/2, 
β =​ 1/3, and z =​ α/β =​ 3/214. The continuous approximation underlying the KPZ-roughening includes terms for 
both frontal growth and lateral growth, and a term for additive, uncorrelated Gaussian noise13. A number of 
different interface-growth models belong to the KPZ universality class, and below we compare our results to the 
KPZ exponent values.

Experimental Results
Clover advance.  During the 2010 growing season, clover advanced rapidly into the ryegrass; several longer 
fronts approached the far end of the plot by October. Figure 3A shows each plot’s mean height h t( ) against time. 
Figure 3B shows the interface width w as a function of time for the same samples (to be discussed in detail in the 
Front Roughening subsection).

We estimated interface velocity as the difference in monthly mean clover height. Combining all plots, clo-
ver advanced fastest during the first month of growth. September velocities (after roughening saturated) were 
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independent of interface length L. After September, longer fronts continued to advance, but some shorter fronts 
receded as the growing season ended. During the period of interface roughening, overall mean clover height 
advanced at 20.7 cm/mo (±​0.33 cm/mo, SE). This exceeds mean stolen-elongation rates cited by Cain et al.39, but 
is within the range of clover “dispersal distances”40.

Overall mean clover height increased for five consecutive months. However, several clover fronts began to 
experience winter die-back in October. Therefore, our analysis treated data from June through August as the 
interface-development period, and treated data from September (month 4) as stationary. This is an approxima-
tion, since correlation lengths for larger values of L continued to increase during October.

Spatial Correlation.  Spatial correlations between row heights hy(t) both increased in strength and extended 
to greater distances along the interface as clover advanced. The initial development of correlation length should 
not depend on L, so we pooled observations from all plots. Each month we estimated correlation Gt(l) between 
row heights hy(t) as a function of distance l. Figure 4A shows the correlogram; spatial correlation increased every 
month across most distances less than 200 cm.

The height-difference correlation Ct(l) corroborated the previous result; see Fig. 4B. Each month Ct(l) scaled as 
a power law for an increasing distance along the interface. Using the result for month 4, our model selection pro-
cedure strongly supported a power-law relationship with multiplicative error (Table 3). Power-law behavior of the 
height-difference correlation allows an estimate of the roughness exponent, since Ct ~ lα, for l <​ ξ(t). Regression 
analysis of the Ct(l) results yielded α =​ 0.277; see Fig. 4B.

Front Roughening.  As the interface roughens, its width should increase with time according to 〈​w2(L, t)〉​1/2 ~ tβ.  
Figure 3B shows each plot’s interface width against time. We tested the predicted scaling after excluding data for 
L =​ 1 m, since roughening in those (smallest) plots equilibrated earlier than observed for larger L. Model selection 
found support for the power-law model with multiplicative error (Table 3). Using this model, we estimated the 
growth exponent β as 0.312 (±​0.073, SE); see Fig. 3B. Inclusion of plots where L =​ 1 m had little effect; the resulting  
estimate is β =​ 0.343 (±​0.059, SE).

Figure 4C shows how local interface widths wt(l) increased as the interface developed. Each month wt(l) scaled 
as the same power law for a greater distance along the interface, as anticipated from the increase in correlation 
length ξ(t).

Regime Predicted Scaling Comment KPZ Exponent Field Exponent

Development ξ(t) ~ t1/z Correlation length, dynamic exponent z =​ 3/2 z =​ 1.522 ±​ 0.708†

t× ~ Lz Crossover time, interface length z =​ 0.810 ±​ 0.262‡

wt ~ tβ Interface width, growth exponent β =​ 1/3 β =​ 0.312 ±​ 0.073

Ct(l) ~ lα Height-difference correlation, l <​ ξ(t) α =​ 1/2 α =​ 0.277

Stationarity w(l) ~ lα Local interface width α =​ 0.311

w(L) ~ Lα Interface width α =​ 0.278 ±​ 0.181

〈​Δ​max〉​L ~ Lα Front-runner’s lead α =​ 0.475 ±​ 0.191

Table 2.   Expected scaling relationships during development of the interface, expected exponent values for 
a Kardar-Parisi-Zhang (KPZ) system, and estimated exponents from our field experiment. z estimated by 
z =​ α/β, with α estimates from the front-runner’s lead† and plot interface width‡. Of all estimates with standard 
errors, only z‡ differs significantly from KPZ.
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Figure 3.  Experimental interface development. (A) Mean plot heights (cm) by month. Red, yellow, green, 
blue, and purple indicate, respectively, L =​ 1, 2, 4, 8, 16 m. “Noise” added to abscissa for visibility. (B) Each plot’s 
interface width by month; note the log-log scales. Dashed line indicates scaling during development. Estimated 
growth exponent β =​ 0.312. 1 m plots marked as X, signifying earlier saturation; see text.
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Stationary Roughness and the Front-Runner.  Assuming that roughening equilibrated in month 4, we 
tested the predicted scaling of interface width against alternatives in two ways. The first uses the local roughening 
analysis, and the second asks how mean interface width increases with L.

After saturation, local width w(l), where (l ≤​ L), should scale as w(l) ~ lα. We combined month-4 data from 
different plots to characterize local roughening; see Fig. 4C. Our AIC-criterion (see Methods) strongly supported 
the power-law formulation with multiplicative error (Table 2). The associated estimate of the roughness exponent 
was α =​ 0.311.

The mean roughening analysis treated each plot’s width w(L) separately. Using September estimates (Fig. 5A), 
the model selection procedure again provided substantial support for a power-law relationship with multiplica-
tive error (Table 3). The power-law model for mean interface width as a function of interface length gave an 
estimate α as 0.278 ±​ 0.181 (SE).

Once roughening has equilibrated, the average lead of the front-runner, beyond the mean height, should scale 
with length as 〈​Δ​max〉​L ~ Lα. Our model selection procedure once again found support for power-law scaling with 
multiplicative error (Table 3). Using the preferred model, the front-runner scaling estimated the roughening 
exponent as α =​ 0.475 ±​ 0.091 (SE); R2 =​ 0.6; see Fig. 5B.

Table 2 lists our estimated scaling exponents. The length-based estimates of the roughness exponent α are 
consistent; scaling of the front-runner suggests greater roughness; we discuss this difference below. But every sta-
tistical analysis involving either the growth or the roughness exponent supported a power-law formulation over 
statistical alternatives, as follows from the assumed fractal structure of the interface.

Ecological Implications
For dispersal-limited plants, ecological interactions driving invasive advance will often occur within the width 
of a between-species interface. The framework of kinetic roughening quantitatively organizes scaling effects pro-
duced by spatially correlated invasive growth. In turn, estimates of interface width and roughness help reveal the 
local structure of the within and between species interactions underlying spatial invasion.

As interface width, wt, increases during development, the area within which invader and resident individuals 
compete for space, L ×​ wt, increases. Averaging invader density across rows y produces an interface profile, which 
summarizes the pattern of interactions within the width wt. Profiles for our experimental data show the fraction 
of L rows occupied by clover as a function of distance from the mean height at time t.
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Figure 4.  Field experiment: interface development. (A) Spatial correlogram: correlation of row heights, Gt(l) 
[Eq. (2)]. The strength and lag distance at which correlations remained significant increased through time, 
indicating an increase in the correlation length, ξ(t), along the interface. Key indicates month 1 through 5 for 
each plot. (B) Height-difference correlation function, Ct(l) [Eq. (4)], for months 1 through 5. Distance over 
which power-law scaling holds increases with time, that is, increases as correlation distance increases. The 
dashed line indicates the scaling relationship for month 4, based on the estimated growth exponent α =​ 0.277. 
(C) Local interface width wt(l) across months. The dashed line again shows the estimated scaling relationship 
for month 4 of α =​ 0.311. Note the log-log scales in (B,C).

Clover Growth 
Analysis Linear Exp 1 Exp 2 Pow 1 Pow 2

wt ~ tβ 411.21 407.82 4.65 0 408.72

Ct(l) ~ lα 2014.94 1716.08 754.1 0 1398.53

w(l) ~ lα 3629.0 3061.25 1528.87 0 2528.99

w(L) ~ Lα 118.44 117.02 2.56 0 117.18

〈​Δ​max〉​L ~ Lα 158.15 155.15 6.48 0 155.76

Table 3.   ΔAIC scores. Models compared are as follows. Linear: y =​ x +​ ε; Exp 1: y =​ log(x) +​ ε; Exp 2: 
log(y) =​ x +​ ε; Pow 1: log(y) =​ log(a) +​ b log(x) +​ ε; Pow 2: y =​ axb +​ ε. ε is a random error term with zero 
expectation and finite variance. Results support power-law models.



www.nature.com/scientificreports/

7Scientific Reports | 6:29908 | DOI: 10.1038/srep29908

Figure S1 in the Supplementary Information shows interface profiles from one experimental plot (16 m, same 
as Fig. 1) for five months. Every month clover and ryegrass occurred with nearly equal frequency at the mean 
height. The first month’s (June) profile drops sharply; the competitors mix very little as the interface begins to 
develop. The remaining profiles show how interface width increases, which enlarges the area of interspecific 
mixing.

We approximated observed interface profiles with the complementary error function (see Supporting 
Information), since mean invader density has a roughly Gaussian decline across the interface41. If ρt(h) represents 
clover density at height h and time t. Then:

ρ = −h erfc h h t w( ) 1
2

([ ( )]/ ) (5)t t

where erfc is the complementary error function, and wt is interface width estimated at time t. ρt(h) “flattens” as wt 
increases. Increased interface width can decrease the frequency of the invader’s self-regulating interactions within 
the enlarging interface, and can increase the frequency of competitive interaction with the resident species. The 
Supplementary Information shows how these frequencies change as the width expands.

Discussion
Given within-species spatial clustering, interspecific interactions will often occur at the interface where clus-
ters contact. This depiction of plant spatial competition, common to numerous models, invites application of 
kinetic-roughening theory as a way to link pattern and process in dispersal-limited organisms. The framework 
requires only a few parameters to predict a series of scaling relationships applicable across a diverse local-growth 
processes. The methods of kinetic roughening should apply across physical scales if the growth processes are 
sufficiently similar. Perhaps, expansion or contraction of a species’ geographic range might be characterized as 
interface movement between habitats, driven by gain and loss of local demes. The obvious complication across 
greater distances is environmental heterogeneity23. Spatial heterogeneity in demographic rates, varying at a scale 
much greater than local dispersal distance, challenges application of kinetic roughening in analyzing ecological 
invasion. But generalizations of the scaling principles we invoked may prove useful for spatially heterogeneous 
invasion processes13.

In our field experiment, length-based estimates of the roughness exponent α were close to 0.3, and the scaling 
of the front-runner’s lead yielded an estimated α close to 0.5. Lattice models for clonal growth usually assume 
that an individual (ramet) propagates forward, backward and laterally; any unoccupied, nearest-neighboring site 
can be colonized at the same rate. But Cain et al.39 carefully mapped the architecture of clonal growth in a white 
clover population. Node-to-node branching angles of apical meristems centered on 0° (straight ahead), but some 
large angles were observed. Lateral meristems branched off with a bimodal angular distribution, concentrated 
at ±​60–70°. Clover, then, exhibits forward and lateral growth, but with a bias toward forward propagation. The 
resulting morphology could have induced the difference between the scaling of the front-runner’s lead and the 
length-scaling of interface roughening.

Estimates of dynamic-scaling exponents abound for advancing fronts in physical systems13. In biology the 
framework has been invoked to model advancing fronts from bacterial colonies42,43 to forest expansion16, but 
seldom have the scaling exponents been measured empirically. A microscopic analysis of bacterial growth yielded 
two roughness exponents44. One experimental treatment promoted longer-range correlations along the front; esti-
mated roughness was α =​ 0.78 ±​ 0.02 agreeing with an earlier, independent result42. The second estimate, involv-
ing a mutant bacterial strain and a different substrate, yielded a lesser value: α =​ 0.5 ±​ 0.0144. A dynamic-scaling 
study of callus growth, a proliferation of plant tissues in response to surface injury, produced an estimated rough-
ness exponent of α =​ 0.86 ±​ 0.0445. Point estimates of the roughness exponent of our clover fronts, growing under 
interspecific competition for space, tended to be lower. However, standard errors of our estimates are relatively 
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large. As a consequence, in 4 of 5 cases (see Table 2) we cannot reject the hypothesis of no difference between our 
estimated exponents and the KPZ values. In general, variation among both abiotic environments and local biotic 
interactions regulating growth may diversify interface geometries in biological systems42, and present a challenge 
to the application of organizing principles.

Methods
Spatial Competitors.  We studied dispersal-limited competition between Dutch white clover (T. repens) 
and perennial ryegrass (L. perenne). Both species reproduce mainly through local, clonal growth40,46. T. repens 
propagates vegetatively through stoloniferous stems47, while L. perenne produces tillers48. Competitive interaction 
between these important forage crops is well understood39,49. We located experimental plots at the University of 
Guelph Turfgrass Institute in an area homogeneous with respect to micro-topography (43°33′​N, 80°13′​W). To 
minimize spatial heterogeneity, vegetation and the top layer of soil were removed, and the soil was tilled before 
the experiment began.

Experimental Design.  We established plots with interface length L =​ 1, 2, 4, 8, and 16 m, with four replicates 
of each length. To avert edge effects, we added a 0.5 m buffer, where no data were collected, at both ends of every 
plot. A plot had dimensions of L ×​ 3 m; all plots were initially split lengthwise by plastic dividers into sections of 
1 m and the remaining 2 m. We planted T. repens in the one-meter sections, and L. perenne in the two meter sec-
tions; we anticipated that clover would advance, given the soil resources and periodic mowing.

In Fall 2007 we planted Dutch white clover seed and a perennial ryegrass mix at respective densities of  
>​1.28 kg/100 m2, and >​7.5 kg/ha. The ryegrass mix consisted of 40% Barclay, 30% Passport, and 30% Goalkeeper 
varieties. For ease of planting, plots were arranged (with one exception) so that monocultures in one row bor-
dered monocultures of the same species in the next row. Experimental blocks were arranged linearly from the 
northeast to the southwest. Spatial constraints required two rows within each block, aligned from the northwest 
to the southeast. One row in each block contained plots of L =​ 1 and 16 m side by side, separated by their buffer 
areas, plus an additional one meter gap to ensure independence of the plots. The other row contained plots of the 
remaining L in the same manner. The order of the rows within the block and the position of plots within a row 
were randomly selected. Blocking exerted no significant statistical effects on the results.

The area was watered as necessary; the well drained, sandy loam soil prevented excessive moisture accumu-
lation. Ryegrass required fertilization twice before it became fully established (on 7/7/2008 and 9/19/2008; each 
time we applied 25 kgN/ha). To remove weeds without disturbing the soil, we sprayed herbicide twice (7/7/2008 
and 9/19/08). The clover was sprayed with a grass control herbicide (Poast Ultra, 1 L/ha), and the grass with a 
broad-leaf control herbicide (Par 3, 55 mL/100 m2). Throughout the experiment we removed weeds manually, 
unless removal would disturb the interface.

In spring 2009, monocultures achieved densities sufficient for the experiment. On May 20, plastic barri-
ers between monocultures were removed. Plots were mowed weekly to 5 cm above ground through the end of 
October 2009. There was very little advance of the front in this first season (no movement in most plots) possibly 
due to the intense mowing regime. In 2010, we mowed only once a month to 8 cm above ground, and the clover 
steadily advanced. We took monthly photos just after mowing.

In June 2010 we began recording the monthly advance of T. repens in each plot. We resolved measurements 
at a scale of 1 cm2, the size of an individual clover ramet50. We marked each 1 m2 subsection of every plot perma-
nently, to reference growth measurements. Each such subsection was photographed from above after monthly 
mowing. We re-projected each photo to correct for perspective, and combined photos from the same plot. We 
recorded the 100 L row heights hy(t) for T. repens in each plot.

We tested the hypothesized power-law relationships against alternative linear and exponential models51. 
We fit power-law models with two different assumptions regarding error distribution. The first assumed nor-
mally distributed, additive error; the second assumed log-normally distributed, multiplicative error52. Our 
kinetic-roughening framework predicts the latter. We compared relative support for each model using differences 
in AIC scores (Δ​AIC); we considered models with Δ​AIC <​ 2 as supported substantially53.

After confirming scaling relationships statistically, we compared the exponents to those of the KPZ universal-
ity class. We report the slopes ±​ standard error from all of our power-law scaling results, except for Ct(l) and w(l) 
where we simply provide the estimated exponent. Although we have followed standard kinetic roughening theory 
protocol, the inherent autocorrelation in these two latter regressions invalidates ordinary least squares confidence 
intervals. This leaves one estimate with standard error for β from interface growth during development, and two 
estimates of α from the interface width and front-runner analyses. We estimated z as α

β
 using both α estimates and 

allowing uncertainty to propagate. Finally, we tested all exponents with available standard errors against KPZ 
values with t-tests.
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