616 research outputs found

    Intracranial vascular anastomosis using the microanastomotic system

    Get PDF
    Journal ArticleThe authors describe the use of a microanastomotic device to perform intracranial end-to-end vascular anastomoses. Direct end-to-end anastomosis was performed between the superficial temporal artery and branches of the middle cerebral artery (MCA) in three patients. Two patients had moyamoya disease, with severe proximal MCA disease, and one suffered an internal carotid artery occlusion with poor collateral flow. All patients reported a history of recent ischemic symptoms. Each anastomosis was accomplished in less than 15 minutes with technically satisfactory results. Postoperative angiographic studies demonstrated patency of the bypasses in all patients

    Physiological Mechanisms and Significance of Intracranial B Waves.

    Get PDF
    Objective Recently published studies have described slow spontaneous cerebral blood flow (CBF) and cerebrospinal fluid (CSF) oscillations measured by magnetic resonance imaging (MRI) as potential drivers of brain glymphatic flow, with a similar frequency as intracranial B-waves. Aiming to establish the relationship between these waveforms, we performed additional analysis of frequency and waveform parameters, of our previously published transcranial Doppler (TCD) and intracranial pressure (ICP) recordings of intracranial B waves, to compare to published MRI frequency measurements of CBF and CSF slow oscillations. Patients and Methods We analyzed digital recordings of B waves in 29 patients with head injury, including middle cerebral artery (MCA) flow velocity (FV), ICP, end tidal CO2, and arterial blood pressure (ABP). A subset of these recordings demonstrated high B wave activity and was further analyzed for parameters including frequency, interaction, and waveform distribution curve features. These measures were compared to published similar measurements of spontaneous CBF and CSF fluctuations evaluated using MRI. Results In patients with at least 10% amplitude B wave activity, the MCA blood flow velocity oscillations comprising the B waves, had a maximum amplitude at 0.0245 Hz, and time derivative a maximum amplitude at 0.035 Hz. The frequency range of the B waves was between 0.6-2.3 cycles per min (0.011-0.038 Hz), which is in the same range as MRI measured CBF slow oscillations, reported in human volunteers. Waveform asymmetry in MCA velocity and ICP cycles during B waves, was also similar to published MRI measured CBF slow oscillations. Cross-correlation analysis showed equivalent time derivatives of FV vs. ICP in B waves, compared to MRI measured CBF slow oscillations vs. CSF flow fluctuations. Conclusions The TCD and ICP recordings of intracranial B waves show a similar frequency range as CBF and CSF flow oscillations measured using MRI, and share other unique morphological wave features. These findings strongly suggest a common physiological mechanism underlying the two classes of phenomena. The slow blood flow and volume oscillations causing intracranial B waves appear to be part of a cascade that may provide a significant driving force for compartmentalized CSF movement and facilitate glymphatic flow

    Are All Successful Communities Alike? Characterizing and Predicting the Success of Online Communities

    Full text link
    The proliferation of online communities has created exciting opportunities to study the mechanisms that explain group success. While a growing body of research investigates community success through a single measure -- typically, the number of members -- we argue that there are multiple ways of measuring success. Here, we present a systematic study to understand the relations between these success definitions and test how well they can be predicted based on community properties and behaviors from the earliest period of a community's lifetime. We identify four success measures that are desirable for most communities: (i) growth in the number of members; (ii) retention of members; (iii) long term survival of the community; and (iv) volume of activities within the community. Surprisingly, we find that our measures do not exhibit very high correlations, suggesting that they capture different types of success. Additionally, we find that different success measures are predicted by different attributes of online communities, suggesting that success can be achieved through different behaviors. Our work sheds light on the basic understanding of what success represents in online communities and what predicts it. Our results suggest that success is multi-faceted and cannot be measured nor predicted by a single measurement. This insight has practical implications for the creation of new online communities and the design of platforms that facilitate such communities.Comment: To appear at The Web Conference 201

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Perceptual learning shapes multisensory causal inference via two distinct mechanisms

    Get PDF
    To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source

    Suitability of high-resolution seismic method to identifying petroleum reservoirs in Kansas--a geological perspective

    Get PDF
    Kansas has been a part of a stable craton since at least the beginning of the Paleozoic some 550 m. y. ago. The majority of the sedimentary rocks deposited during the last 550 m. y. are products of numerous inundations by shallow seas. Interspersed with these transgressions were periods of erosion, many coinciding with widespread uplift. The distribution of reservoir-quality rocks has been controlled by the varying structural and depositional settings in both time and space. The identification of these reservoirs begins with a knowledge of the geologic history as detailed by the vast subsurface information base, mainly wire line logs and completion records, that is available for Kansas. Seismic profiling has been and will continue to be used effectively to resolve structural traps. The trend in exploration in the midcontinent has been to strengthen the search for reservoirs associated with more subtle structures and difficult-to-find stratigraphic traps. Stratigraphic traps will become increasingly important, particularly within established production trends. The many unconformities in the midcontinent stratigraphic column afford numerous types of trapping geometry such as truncation beneath an unconformity, traps associated with buried valleys, discontinuous onlap onto erosion surfaces, and porosity pinchouts due to changes in original depositional conditions and diagenetic alteration. The most widespread petroleum accumulations in Kansas occur in structural and stratigraphic traps associated with the pre-Pennsylvanian unconformity. Production associated with the unconformity includes numerous lower Paleozoic pay zones which subcrop directly beneath the unconformity in the Sedgwick, Salina, and Anadarko basins; the Arbuckle production on the Central Kansas uplift; and numerous fields which payout from either conglomerates or weathered zones along the unconformity. Considerable production also occurs farther up-section with the Cherokee and Lansing-Kansas City groups, and down-section in the Viola Formation and Simpson Group. In order to demonstrate the potential use of the seismic method in defining subtle traps, synthetic seismograms were produced for selected strata in central Kansas. Critical attributes of reservoir rock and associated strata conducive to seismic stratigraphic processing include the thickness of a potential reservoir bed and its velocity and density contrast with adjacent strata. Thicker strata such as the Morrow and most lower Paleozoic formations may be more easily defined by seismic-stratigraphic methods. In contrast, the stratigraphy of the Pennsylvanian and Permian cyclothems may not be amenable to definition by seismic methods because these units contain heterogenous reservoirs interbedded with other thin strata of similar composition

    Suitability of high-resolution seismic method to identifying petroleum reservoirs in Kansas--a geological perspective

    Get PDF
    Kansas has been a part of a stable craton since at least the beginning of the Paleozoic some 550 m. y. ago. The majority of the sedimentary rocks deposited during the last 550 m. y. are products of numerous inundations by shallow seas. Interspersed with these transgressions were periods of erosion, many coinciding with widespread uplift. The distribution of reservoir-quality rocks has been controlled by the varying structural and depositional settings in both time and space. The identification of these reservoirs begins with a knowledge of the geologic history as detailed by the vast subsurface information base, mainly wire line logs and completion records, that is available for Kansas. Seismic profiling has been and will continue to be used effectively to resolve structural traps. The trend in exploration in the midcontinent has been to strengthen the search for reservoirs associated with more subtle structures and difficult-to-find stratigraphic traps. Stratigraphic traps will become increasingly important, particularly within established production trends. The many unconformities in the midcontinent stratigraphic column afford numerous types of trapping geometry such as truncation beneath an unconformity, traps associated with buried valleys, discontinuous onlap onto erosion surfaces, and porosity pinchouts due to changes in original depositional conditions and diagenetic alteration. The most widespread petroleum accumulations in Kansas occur in structural and stratigraphic traps associated with the pre-Pennsylvanian unconformity. Production associated with the unconformity includes numerous lower Paleozoic pay zones which subcrop directly beneath the unconformity in the Sedgwick, Salina, and Anadarko basins; the Arbuckle production on the Central Kansas uplift; and numerous fields which payout from either conglomerates or weathered zones along the unconformity. Considerable production also occurs farther up-section with the Cherokee and Lansing-Kansas City groups, and down-section in the Viola Formation and Simpson Group. In order to demonstrate the potential use of the seismic method in defining subtle traps, synthetic seismograms were produced for selected strata in central Kansas. Critical attributes of reservoir rock and associated strata conducive to seismic stratigraphic processing include the thickness of a potential reservoir bed and its velocity and density contrast with adjacent strata. Thicker strata such as the Morrow and most lower Paleozoic formations may be more easily defined by seismic-stratigraphic methods. In contrast, the stratigraphy of the Pennsylvanian and Permian cyclothems may not be amenable to definition by seismic methods because these units contain heterogenous reservoirs interbedded with other thin strata of similar composition

    GMI Spin Mechanism Assembly Design, Development, and Test Results

    Get PDF
    The GMI Spin Mechanism Assembly (SMA) is a precision bearing and power transfer drive assembly mechanism that supports and spins the Global Microwave Imager (GMI) instrument at a constant rate of 32 rpm continuously for the 3 year plus mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements [1]. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center (GSFC) to design, build, and test the GMI instrument. The SMA design has to meet a challenging set of requirements and is based on BATC space mechanisms heritage and lessons learned design changes made to the WindSat BAPTA mechanism that is currently operating on orbit and has recently surpassed 8 years of Flight operation

    Diagnosing students' difficulties in learning mathematics

    Get PDF
    This study considers the results of a diagnostic test of student difficulty and contrasts the difference in performance between the lower attaining quartile and the higher quartile. It illustrates a difference in qualitative thinking between those who succeed and those who fail in mathematics, illustrating a theory that those who fail are performing a more difficult type of mathematics (coordinating procedures) than those who succeed (manipulating concepts). Students who have to coordinate or reverse processes in time will encounter far greater difficulty than those who can manipulate symbols in a flexible way. The consequences of such a dichotomy and implications for remediation are then considered
    • …
    corecore