3,202 research outputs found

    Active rc networks of low sensitivity for integrated circuit transfer function

    Get PDF
    Active RC network is capable of extremely high Q performance with exceptional stability and has independently adjustable zeros and poles. The circuit consists of two integrators and two summers that are interconnected to produce a complete second-order numerator and a second-order denominator

    MHD Turbulence Revisited

    Get PDF
    Kraichnan (1965) proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfv\'en wave packets. Recent work has generated some controversy over the nature of non linear couplings between colliding Alfv\'en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are: (i) in common with weak turbulent cascades, wave packets belonging to the inertial range are long lived; (ii) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (iii) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (iv) 3--wave interactions dominate individual collisions between wave packets, but interactions of all orders n3n\geq 3 make comparable contributions to the intermediate turbulent energy cascade; (v) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (vi) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wave numbers; (vii) For an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade.Comment: 25 pages, to appear in The Astrophysical Journa

    Design, development and delivery of one /1/ breadboard and three /3/ production units of a 75 VA integrated static inverter Monthly report no. 15

    Get PDF
    Flip-flop arrays, power transistors, epitaxial stress, and other technological developments in integrated static inverter progra

    Formation of nanoporous InP by electrochemical anodization

    Get PDF
    Porous InP layers can be formed electrochemically on (100) oriented n- InP substrates in aqueous KOH. A nanoporous layer is obtained underneath a dense near-surface layer and the pores appear to propagate from holes through the near-surface layer. In the early stages of the anodization transmission electron microscopy (TEM) clearly shows individual porous domains which appear to have a square-based pyramidal shape. Each domain appears to develop from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain. When the domains grow, the current density increases correspondingly. Eventually, the domains meet forming a continuous porous layer, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Numerical models of this process have been developed. Current-time curves at constant potential exhibit a peak and porous layers are observed to form beneath the electrode surface. The density of pits formed on the surface increases with time and approaches a plateau value

    Nanoporous domains in n-InP anodized in KOH

    Get PDF
    A model of porous structure growth in semiconductors based on propagation of pores along the A directions has been developed. The model predicts that pores originating at a surface pit lead to porous domains with a truncated tetrahedral shape. SEM and TEM were used to examine cross- sections of n-InP electrodes in the early stages of anodization in aqueous KOH and showed that pores propagate along the A directions. Domain outlines observed in both TEM and SEM images are in excellent agreement with the model. The model is further supported by plan-view TEM and surface SEM images. Quantitative measurements of aspect ratios of the observed domains are in excellent agreement with the predicted values

    Effect of electrolyte concentration on anodic nanoporous layer growth for n-InP in aqueous KOH

    Get PDF
    The surface morphology and sub-surface porous structure of (100) n-InP following anodization in 1 - 10 mol dm-3 aqueous KOH were studied using linear sweep voltammetry (LSV) in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). LSV of n-InP in 10 mol dm-3 KOH showed a single anodic current peak at 0.41 V. As the concentration of electrolyte was decreased, the peak increased in current density and charge and shifted to more positive potentials; eventually individual peaks were no longer discernable. Porous layers were observed in SEM cross-sections following linear potential sweeps and the porous layer thickness increased significantly with decreasing KOH concentration, reaching a maximum value at ~2.2 mol dm-3. At concentrations less than 1.8 mol dm-3 the layer thickness decreased sharply, pore diameters became wider and pore walls became narrower until eventually, at 1.1 mol dm-2 or lower, no porous layers were observed. It was also observed that the pore width increased and the inter-pore spacing decreased with decreasing concentration. It is proposed that preferential pore propagation occurs along directions, contrary to previous suggestions, and that the resulting anoporous domains, initially formed, have triangular cross-sections when viewed in one of the {110} cleavage planes, ‘dove-tail’ crosssections viewed in the orthogonal {110} cleavage plane and square profiles when viewed in the (100) plane of the electrode surface
    corecore