73 research outputs found

    Comparison of bacterioneuston and bacterioplankton dynamics during a phytoplankton bloom in a fjord mesocosm

    Get PDF
    The bacterioneuston is the community of Bacteria present in surface microlayers, the thin surface film that forms the interface between aquatic environments and the atmosphere. In this study we compared bacterial cell abundance and bacterial community structure of the bacterioneuston and the bacterioplankton (from the subsurface water column) during a phytoplankton bloom mesocosm experiment. Bacterial cell abundance, determined by flow cytometry, followed a typical bacterioplankton response to a phytoplankton bloom, with Synechococcus and high nucleic acid (HNA) bacterial cell numbers initially falling, probably due to selective protist grazing. Subsequently HNA and low nucleic acid (LNA) bacterial cells increased in abundance but Synechococcus did not. There was no significant difference between bacterioneuston and bacterioplankton cell abundances during the experiment. Conversely, distinct and consistent differences between the bacterioneuston and the bacterioplankton community structure were observed. This was monitored simultaneously by Bacteria 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). The conserved patterns of community structure observed in all of the mesocosms indicate that the bacterioneuston is distinctive and non-random

    Catchment-scale biogeography of riverine bacterioplankton

    Get PDF
    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physiochemical status of the river

    Ingestion of microplastics by the chironomid Chironomus sancticaroli and effects on the microbiome in the presence of PBDEs

    Get PDF
    Microplastic particles in the environment can associate with persistent organic pollutants (POPs) due to the hydrophobic nature of plastics and organic chemicals. PBDEs (polybrominated diphenyl ethers) are widely used as flame-retardants in products such as textiles and soft furnishings, with the potential to leach into the environment and be associated with microplastics. If ingested, the gut environment of an organism may favour desorption of adsorbed chemicals due to gut condition. Therefore the ingestion of microplastic particles has implications for uptake and bioaccumulation of these chemicals. Furthermore the presence of microplastics and chemicals in the gut of an organism can also influence the gut environment itself. Gut microbiomes are known to hold a vital role in host metabolism, nutrition and immunity and as such understanding the influence of chemicals and microplastics on the gut microbiota is key

    Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt

    Get PDF
    Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems

    Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-08-29, rev-recd 2021-01-26, accepted 2021-02-01, registration 2021-02-02, pub-electronic 2021-02-22, online 2021-02-22, pub-print 2021-08Publication status: PublishedFunder: RCUK | Natural Environment Research Council (NERC); doi: https://doi.org/10.13039/501100000270; Grant(s): NE/N009452/1Funder: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); doi: https://doi.org/10.13039/501100000268; Grant(s): BB/S010661/1Abstract: Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems

    Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands

    Get PDF
    Climate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross-seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change

    Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-05-03, rev-recd 2021-06-18, accepted 2021-10-06, pub-electronic 2021-10-27Article version: VoRPublication status: PublishedFunder: Natural Environment Research Council; Id: http://dx.doi.org/10.13039/501100000270; Grant(s): NE/N009452/1Funder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/S010661/1Abstract: Climate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross‐seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change
    corecore