THE UNIVERSITY OF WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher's website. Access to the published version may require a subscription.

Author(s): Cunliffe, M; Whiteley, AS; Newbold, L; Oliver, A; Schafer, H; Murrell, JC Article Title: Comparison of Bacterioneuston and Bacterioplankton Dynamics during a Phytoplankton Bloom in a Fjord Mesocosm

Year of publication: 2009

Link to published version: http://dx.doi.org/ 10.1128/AEM.01374-09 Publisher statement: None

1 Comparison of bacterioneuston and bacterioplankton dynamics during a

- 2 phytoplankton bloom in a fjord mesocosm
- 3
- 4 Michael Cunliffe¹, Andrew S. Whiteley², Lindsay Newbold², Anna Oliver², Hendrik
- 5 Schäfer³ & J. Colin Murrell¹*
- 6
- ¹Department of Biological Sciences, University of Warwick, Gibbet Hill Road,
- 8 Coventry, CV4 7AL, UK.
- ⁹ ²Centre for Ecology and Hydrology, Mansfield Road, Oxford, OX1 3SR, UK.
- ³ Warwick HRI, University of Warwick, Wellesbourne, CV35 9EF, UK.
- 11
- 12
 *For correspondence.
 E: j.c.murrell@warwick.ac.uk

 13
 T: (+44) 24 7652 3553

 14
 F: (+44) 24 7652 3568

 15
 16

 17
 17
- 18

19 ABSTRACT

20	The bacterioneuston is the community of <i>Bacteria</i> present in surface microlayers, the
21	thin surface film that forms the interface between aquatic environments and the
22	atmosphere. In this study we compared bacterial cell abundance and bacterial
23	community structure of the bacterioneuston and the bacterioplankton (from the
24	subsurface water column) during a phytoplankton bloom mesocosm experiment.
25	Bacterial cell abundance, determined by flow cytometry, followed a typical
26	bacterioplankton response to a phytoplankton bloom, with Synechococcus and high
27	nucleic acid (HNA) bacterial cell numbers initially falling, probably due to selective
28	protist grazing. Subsequently HNA and low nucleic acid (LNA) bacterial cells
29	increased in abundance but Synechococcus did not. There was no significant
30	difference between bacterioneuston and bacterioplankton cell abundances during the
31	experiment. Conversely, distinct and consistent differences between the
32	bacterioneuston and the bacterioplankton community structure were observed. This
33	was monitored simultaneously by Bacteria 16S rRNA gene terminal restriction
34	fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis
35	(DGGE). The conserved patterns of community structure observed in all of the
36	mesocosms indicate that the bacterioneuston is distinctive and non-random.
37	

38

AEM Accepts published online ahead of print

39 INTRODUCTION

40 Determining and understanding both spatial and temporal patterns in bacterioplankton 41 community structure is a core aim of marine microbial ecology (15). Distributions of 42 bacterioplankton over space and time can be correlated to environmental parameters 43 and subsequent links can therefore be made to ecosystem function. A broad range of 44 spatial studies made on macro- (34), meso- (20) and micro- (27) scales have shown 45 clear patterns in distribution of the bacterioplankton.

46 The sea surface microlayer is part of the air-sea interface and is generally 47 considered to be the top 1 mm or less of the ocean (26). Surface microlayers have a 48 fundamental role in regulating transport processes between the ocean and the 49 atmosphere (26) and are often referred to as the neuston (28, 31). For over 25 years it 50 has been hypothesised that the sea surface microlayer is a hydrated gelatinous layer 51 (40) that contains surface active organic compounds such as carbohydrates, proteins, 52 lipids and humic substances, in relatively high concentrations (17, 45, 48). Recently, 53 gel-like transparent expolymer particles (TEP) have been shown to be enriched in the 54 surface microlayer, supporting the concept of a gelatinous interfacial layer (46). 55 Bacteria present in surface microlayers or the neuston are regarded as the bacterioneuston. There are relatively few studies which have directly compared the 56 57 community structure of the bacterioneuston with that of the cognate subsurface 58 (bacterioplankton) in the marine environment. Analysis of Bacteria 16S rRNA gene 59 clone libraries constructed using DNA isolated from surface microlayer and 60 subsurface water (<1 m) samples from the North Sea revealed that the bacterioneuston 61 was dominated by two operational taxonomic units which accounted for 81% of 62 clones analysed (13). Community structure profiling using denaturing gradient gel 63 electrophoresis (DGGE) of the bacterioneuston at three sites around Oahu Island in

64	the Pacific Ocean showed that the bacterioneuston forms consistent and distinct
65	community structures. Conversely, Archaea community structure of the same samples
66	using Archaea 16S rRNA gene DGGE analysis did not show the same surface
67	microlayer-specific response, indicating that Bacteria and Archaea respond to their
68	environment in fundamentally different ways in the neuston (7).
69	Other studies, have however, reported no consistent differences between the
70	bacterioneuston and the bacterioplankton. Samples collected from two separate sites
71	in the Mediterranean Sea were analysed using single strand conformation
72	polymorphism (SSCP) of Bacteria 16S rRNA genes (1). The authors did not report
73	any significant differences between the surface microlayer and subsurface samples
74	using this community profiling method.
75	Non-marine studies of the bacterioneuston and Archaea communities in
76	estuarine (10) and freshwater (5, 19) environments have also shown distinct microbial
77	community structures present in the surface microlayer compared to those in
78	subsurface water ≤ 1 m below.
79	Recurring phytoplankton blooms are a key feature of coastal waters and
80	strongly influence bacterioplankton community structure and succession (4, 14, 38).
81	Phytoplankton blooms stimulate the bacterioplankton by the release of dissolved
82	organic matter (22) or affect bacterioplankton negatively by direct competition for
83	resources (6). Bacterioplankton community structure may also be influenced by
84	grazing flagellates or viral lysis (47).
85	Mesocosm experiments have been used to study plankton ecology for many
86	decades (33). Mesocosms facilitate study of the effects of key environmental
87	parameters, such as temperature, on plankton communities and allow the succession
88	of natural plankton communities that resemble those found in the marine environment

89	(11). The enclosed water mass means that experiments can be designed which
90	manipulate physicochemical parameters to observe biological effects. Furthermore,
91	with replicated mesocosms, the data collected can be analysed with statistics
92	rigorously. In this study we monitored the dynamics of the bacterioneuston and the
93	bacterioplankton in mesocosms of fjord surface water during an artificially induced
94	phytoplankton bloom, comparing bacterial abundance and bacterial community
95	structure in the surface microlayer and subsurface water.
96	

97 MATERIALS AND METHODS

98 Mesocosm set-up and sampling

99	The experiment was carried out at the Marine Biological Field Station, Espeland,
100	Norway (20 km south of Bergen) from 21 May 2008 - 1 June 2008. Twelve land-
101	based mesocosms (1.5 m diameter and 1.5 m deep) were each filled (2,474 L) with
102	pre-filtered (~300 μ m) water from the Raunefjorden. The water in the mesocosms was
103	kept mixed with submerged aquarium pumps. The mesocosms were contained in three
104	larger open containers (Figure 1A) that were filled and circulated constantly with
105	pumped fjord water to maintain the mesocosms at ambient fjord temperature. The
106	twelve mesocosms were divided into two treatment groups, control and nutrient
107	amended, allowing six replicate mesocosms for each treatment. Each of the larger
108	containers held two control mesocosms and two nutrient amended mesocosms (Figure
109	1B). Addition of nitrate and phosphate according to the Redfield stoichiometry (N:P =
110	16:1) (35), as 16 μ M NaNO ₃ and 1 μ M KH ₂ PO ₄ ,was used to induce the phytoplankton
111	bloom at 21.00 hours on day zero.
112	Sampling took place every day for eleven days at 09.00 hours. Subsurface
113	waters were sampled from a depth of 0.75 m in the centre of the mesocosms using a
114	siphon. The surface microlayer was sampled using two different methods, a mesh
115	screen (Garrett screen) and polycarbonate membranes taken from the centre of the
116	mesocosms. The methods sample two different depths, the mesh screen removes the
117	top ~400 μm and the polycarbonate membrane removes the top ~40 μm of the surface
118	microlayer (7). The mesh screen (16-mesh stainless steel screen: size 275×275 mm)
119	was placed below the surface water, lifted horizontally through the surface microlayer
120	and the water was collected into a sterile bottle. 250 mL was then filtered using a
121	peristaltic pump through a Sterivex TM -GS filter unit (pore size 0.2 µm; Millipore).

122 After all the water had been evacuated from the filter unit, 1.6 mL RNAlater[®] 123 (Ambion) was added and the filter unit was stored at 4°C. Polycarbonate membranes 124 (47 mm diameter; pore size $0.2 \,\mu$ m; ISOPORETM; Millipore) were placed onto the 125 water surface using forceps and left for 10 sec before being removed and stored in 2 126 mL screw cap tubes at -20°C.

127

128 Dissolved inorganic nutrients

Subsurface water samples were filtered (SterivexTM-GS; pore size 0.2 μm; Millipore)
before being stored in polyethylene vials at -20°C until nitrate, nitrite, phosphate and
silicate were determined using standard segmented flow analysis with photometric
procedures (18).

133

134 Phytoplankton and bacterial cell counts

135 Phytoplankton and bacterial cells in the mesocosms were enumerated with a Becton 136 Dickinson FACScalibur benchtop flow cytometer (BD Bioscience) equipped with a 137 488 nm laser line. Cells were enumerated in samples collected from the subsurface 138 and mesh screens only, since membrane collected samples do not remove enough 139 water for flow cytometry analysis. Two analyses were performed per sample to 140 determine both phytoplankton and bacterial cell counts. Briefly, phytoplankton 141 (picoeukaryotes, coccolithophorids, small and large nanoplankton) and 142 Synechococcus cell counts were enumerated on fresh unstained samples using modified flow rates (ca. 100 μ L min⁻¹) and pre- and post- aspiration sample weighing 143 144 together with timed acquisition (5 min) (42). Bacterial cell counts (total count and sub-sets for high nucleic acid (HNA) and low nucleic acid (LNA) bacterial cells) were 145 146 determined on paraformaldehyde fixed/citrate treated samples stained with SYBR®

Green I (Invitrogen) using timed acquisition (2 min) in concert with pre- and postaspiration weighing (50). For pre- and post-aspiration weighing, all samples were
weighed before and after analysis to determine sample volumes aspirated during the
sample analysis and internal 0.49 µm reference beads were used to account for flow
and machine drift. All analysed samples were exported as listmode files and analysed
using Cyflogic to gate major populations and calculate absolute cell concentrations
from aspirated volumes.

154

155 Extraction of DNA for bacterial community structure analysis

156 DNA was extracted from subsurface, mesh screen and membrane samples collected 157 on day two, day five and day ten. DNA was extracted from three control mesocosms 158 (replicates A, E and K) and three nutrient amended mesocosms (replicates B, F and L) 159 (Figure 1B). DNA was extracted in a sucrose buffer using lysozyme, proteinase K, 160 SDS and phenol-chloroform as described by Cunliffe *et al* (2008). The resuspended 161 DNA was quantified using a spectrophotometer (ND-1000; NanoDropTM) before all 162 DNA samples were diluted to a concentration of 30 ng.µl⁻¹ and stored at -20°C.

163

164 Bacterial community structure analysis

165 PCR amplification of Bacteria 16S rRNA genes for T-RFLP analysis was performed

166 using a fluorescently labelled primer (6FAM)27F (5'-AGA GTT TGA TCM TGG

167 CTC AG-3') and primer 536R (5'-GWA TTA CCG CGG CKG CTG-3') (41). For

- 168 PCR, a total volume of 50 µl contained 0.5mM dNTPs, 0.5 µM of each primer, 2 units
- 169 of Taq DNA polymerase (Sigma) and 30 ng template DNA. The PCR programme
- 170 consisted of initial denaturation at 94°C for 2 min followed by 30 cycles of 94°C for 1
- 171 min, annealing temperature 52° C for 1 min and elongation at 72° C for 3 min and then

174	PCR products were purified using QIAquick PCR Purification Kit (Qiagen)
175	according to the manufacturer's instructions. 20 μ l of purified PCR product was
176	digested for 4 hr at 37°C using the restriction enzyme MspI (Promega). 0.5 μ l of the
177	digestion product was combined with denatured 0.5 μ l LIZ600 size standard (Applied
178	Biosystems) and formamide before being run on a 3730 DNA sequencer (Applied
179	Biosystems). The sizes of the restriction fragments (T-RFs) were calculated and
180	binned using Genemarker TM (Softgenetics [®]). Bin widths were checked and manually
181	adjusted to encompass all concordant peaks. To differentiate signal from background,
182	a fluorescence unit threshold of 40 units was used to determine which T-RFs to
183	include. Relative abundance was calculated for each T-RF by dividing individual T-
184	RF fluorescence by total sample fluorescence.
185	PCR amplification of 16S rRNA genes from Bacteria for DGGE analysis was
186	performed using primers 341F (5'- CCT ACG GGA GGC AGC AG -3') and primer
187	518R (5'- ATT ACC GCG GCT GCT GG -3') (30). The same PCR was set up as
188	before for T-RFLP but using the different primers. The PCR programme for DGGE
189	consisted of an initial denaturation at 94°C for 5 min, followed by 35 cycles of 95°C
190	for 1 min, annealing temperature 65-55°C for 20 cycles (reduction of -0.5°C per
191	cycle) and 55°C for 15 cycles, elongation at 72°C for 1 min and then a final
192	elongation step at 72°C for 10 min.
193	DGGE was performed with a DCode TM system (Biorad). Gels were prepared
194	with 10% (v/v) acrylamide/bisacrylamide with a 30-70% linear denaturant gradient
195	(100% denaturant solution contains 6.9M urea and 11.5M formamide). The gel was
196	run in $1 \times TAE$ buffer at 60°C for a total of 1,008 Volt hours (constant voltage 63 V,

199 DGGE bands that were relatively more abundant in the surface microlayer 200 samples were selected and excised. The excised bands were washed in sterile 201 molecular grade water (MGW) before being crushed in 20 µl MGW and incubated at 202 4°C for 2hr. The eluted DNA was used to re-amplify the DGGE band using the same 203 PCR primers and conditions as before. DGGE band DNA sequences were obtained 204 using the University of Warwick Molecular Biology Services Laboratory and are 205 available in GenBank (accession numbers GQ902042 to GQ902046). 206 207 Statistical and ordination analysis 208 Analysis of variance (ANOVA) was used to identify statistical significance in the 209 phytoplankton and bacterial cell count data (n = 6; p < 0.05). Where significant 210 differences were seen, a Tukey's test was used to compare data within a defined set. 211 Both ANOVA and Tukey's test were performed using SPSS statistical software 212 (SPSS). Principal component analysis (PCA) was used to visualise the relationships 213 between bacterial community structures from the T-RFLP data and was carried out using MINITAB[®] statistical software (Minitab). PCA is used to reduce the complexity 214 215 of multivariant data (T-RF relative abundance) by producing new variables that 216 account for most of the variation in the original data (39). DGGE profiles of 16S rRNA genes from *Bacteria* were compared using GelCompare[®]II (Applied Maths) by 217 218 calculating similarity coefficients using a curve based Pearson correlation, followed 219 by the construction of Unweighted Pair Group Method with Arithmetic mean

220 (UPGMA) dendrograms from the calculated similarity coefficients.

221

<u>AEM Accepts published online ahead of print</u>

222 RESULTS

223 Phytoplankton abundance

The phytoplankton bloom succession in the mesocosms progressed generally as expected based on previous experience from earlier experiments with water collected from Raunefjorden (6, 29). The nitrate and phosphate added to the nutrient amended mesocosms was steadily depleted and levels returned to background concentrations by day nine (Figure 2). The concentration of silicate remained constant throughout the experiment. Nitrite increased in the nutrient amended mesocosms to $0.19 \pm 0.01 \,\mu$ M at day five before returning to background levels by day ten (Figure 2).

231 Phytoplankton cells were divided into four groups by flow cytometry analysis: 232 picoeukaryotes, large nanoplankton, small nanoplankton and coccolithophorids (see 233 Materials and Methods). Picoeukaryote numbers increased in both control and 234 nutrient amended mesocosms at the start of the experiment (Figure 3). By day five a 235 significant increase in picoeukaryote numbers was detected in the nutrient amended 236 mesocosms compared to control mesocosms. The artificially induced picoeukaryote bloom peaked on day seven with a median cell density of ~ 2×10^5 cells.mL⁻¹. There 237 238 was no detectable significant difference between picoeukaryote cell counts in the 239 surface microlayer compared to their cognate subsurface water samples. 240 Phytoplankton cells designated as large nanoplankton showed a significant 241 increase in numbers in the nutrient amended mesocosms from day five onwards 242 (Figure 3). As with picoeukaryotes, there was no significant difference between

243 numbers in the surface microlayer and subsurface water.

Small nanoplankton showed more variable cell counts during the time of the
experiment compared to picoeukaryotes and large nanoplankton (Figure 3). After day
six, a significant difference was detected between the counts in the nutrient amended

	248	nanoplankton peaked on day seven before returning to similar cell numbers as the
	249	control mesocosms by day nine.
	250	As with the small nanoplankton, coccolithophorid abundance appeared
ìnt	251	stochastic in contrast to the picoeukaryotes and large nanoplankton cell counts and
pr	252	had no distinct trend. The intra-variation between mesocosms was high for
0	253	coccolithophorid counts and this subsequently affected statistical analysis. At day
ad	254	seven there was a significant difference between cell counts in the subsurface samples
əhc	255	from the control and nutrient amended mesocosms. For the remainder of the
Je (256	experiment the coccolithophorid counts were significantly higher in the nutrient
nlìr	257	amended mesocosms. There was also some indication of weak enrichment of
0	258	coccolithophorids in the surface microlayer (Figure 3).
hec	259	
silis	260	Bacterial abundance
buk	261	Flow cytometry was used to separate three bacterial cell groups: HNA bacterial cells,
ts.	262	LNA bacterial cells and Synechococcus cells. The dynamics of the three groups was
0	263	different during the experiment (Figure 3).
CO	264	HNA bacterial cells showed a marked decrease in abundance at the start of the
	265	experiment with the rate of decrease accelerating rapidly on day three. On day five the
\geq	266	HNA bacterial cells numbers had dropped from an initial ~ 6×10^5 cells.mL ⁻¹ to ~ 1 ×
\triangleleft	267	10^5 cells.mL ⁻¹ . After day five the abundance of HNA bacterial cells began to increase
	268	in all mesocosms and a significant difference between HNA bacterial cell counts in

247

- 269 the nutrient amended mesocosms compared to the control mesocosms for the
- 270 remainder of the experiment was detected (Figure 3). At the end of the experiment

mesocosms compared to cell counts in control mesocosms. The bloom of small

271 HNA bacterial cell numbers reached similar levels to those at the start of the 273 between surface microlayer and subsurface water samples.

Unlike the HNA bacterial cells, LNA bacterial cells did not show a drastic
drop in abundance (Figure 3). LNA bacterial cell abundance fluctuated from day zero

to day eight with no overall pattern. At day two and day three there was a significant

277 difference between subsurface and surface microlayer LNA bacterial cell abundance,

278 with less cells in the surface microlayer sample. LNA bacterial cell abundance

279 fluctuated until day nine when there was a significant increase in the nutrient amended

280 mesocosms, peaking at ~ 7×10^5 cells.mL⁻¹.

As with the HNA bacterial cells, *Synechococcus* cell abundance declined at two rates at the start of the experiment. Initially cell abundance dropped slowly up to day three and then rapidly down to $\sim 4 \times 10^3$ cells.mL⁻¹ on day six (Figure 3). Unlike HNA bacterial cells, *Synechococcus* cell abundance did not recover and remained low for the remainder of the experiment. There were no significant differences in abundance of *Synechococcus* between treatments or between surface microlayer and subsurface water.

288

289 Bacterial community structure

290 We used two Bacteria 16S rRNA gene profiling methods (T-RFLP and DGGE) to

291 monitor changes in the bacterial community structures in surface microlayer and

subsurface water samples collected on day two, day five and day ten.

293PCA ordination of the structures of the bacterial communities from T-RFLP294analysis of subsurface and surface microlayer DNA samples is shown in Figure 4. On295day two, the samples collected from the subsurface and from the surface microlayer

296 using the mesh screen clustered closely together relative to the surface microlayer

297	samples collected using polycarbonate membranes. As the mesocosm blooms
298	progressed, this pattern changed drastically. At day five, samples from the subsurface
299	showed a distinct cluster that was separate from the mesh screen samples. As with day
300	two, the membrane collected surface microlayer samples remain distinct from the
301	subsurface samples. Near the end of the experiment on day ten, bacterial community
302	structure in the samples collected with the mesh screen clustered with the samples
303	collected with membranes and not subsurface water samples. Ordinance analysis of
304	the T-RFLP data in this experiment showed no evidence of bacterial community
305	structural differences as a result of the induced phytoplankton bloom (Figure 4).
306	DGGE analysis of the bacterial community structures showed similar results
307	to the T-RFLP analysis. At day two, subsurface and mesh screen-collected samples
308	were similar and membrane-collected samples showed some differences (Figure 5).
309	This was less pronounced with DGGE than with T-RFLP at day 2. By day five, the
310	membrane collected-samples were distinctly different compared to mesh screen and
311	subsurface samples, forming a separate clade in the dendrogram. Also at day five,
312	some mesh screen collected-samples were different to their associated subsurface
313	samples. By day ten, both the membrane- and mesh screen collected-samples were
314	distinctly different from the subsurface samples, corroborating the results from the T-
315	RFLP analysis. As with the T-RFLP analysis, DGGE analysis confirmed that the
316	bacterial community structures were not affected by the phytoplankton bloom.
317	Five relatively dominant DGGE bands from the surface microlayer samples
318	were excised and sequenced (Figure 5). All five DGGE band DNA sequences were
319	very similar (\geq 98%) to 16S rRNA gene sequences from isolated bacterial strains
320	(Table 1). DGGE bands 1 and 2 were identical to the 16S rRNA gene sequence of
321	Dokdonia donghaensis PRO95 (FJ627052) and Krokinobacter genikus Cos-13

- 322 (AB198086) respectively, from the Flavobacteria family Flavobacteriaceae. DGGE
- 323 DNA sequences 3, 4 and 5 were almost identical to two genera, Alteromonas and
- 324 *Glaciecola* of the Alteromonadaceae (Table 1).

325 **DISCUSSION**

326 Bacterial abundance

327	Results show that the three bacterial cell types quantified in the mesocosms responded
328	in three different ways (Figure 3). Both HNA bacterial cells and Synechococcus cells
329	decreased in numbers drastically at the start of the experiment. HNA bacterial cells
330	and LNA bacterial cells then increased in numbers in the phytoplankton bloom.
331	An abrupt decrease, followed by an increase in bacterioplankton cell
332	abundance is a characteristic response frequently observed during phytoplankton
333	blooms (4, 6, 29, 36). A previous Emiliania huxleyi-dominated mesocosm experiment
334	using Raunefjorden fjord water showed a very similar bacterial cell response (6).
335	Other mesososm experiments at Raunefjorden also reported the same reduction in
336	Synechococcus cell abundance during an induced bloom (29), thus indicating that
337	Synechococcus are not successful under these conditions and/or are out-competed.
338	One of the principal sources of bacterial mortality in the water column is
339	protist predation, with many protists grazing selectively (32). Significantly, some
340	protists target rapidly growing and dividing bacterial cells, such as those with HNA
341	content (16, 44). Furthermore, recent evidence suggests that the concomitant drop in
342	bacterial numbers and bloom of small phytoplankton may be due to mixotrophic
343	growth of phytoplankton (49). This may therefore account for the mortality of HNA
344	bacterial cells and Synechococcus cells, whereas the LNA bacterial cells did not
345	appear to be affected (Figure 3).
346	In this study, cell numbers in the bacterioneuston and the bacterioplankton
347	were not significantly different, indicating that there was no enrichment of cells in the
348	surface microlayer. Surface microlayer and subsurface water samples collected from
349	two sites in the Mediterranean Sea also showed that the numbers of Synechococcus in

352	levels of enrichment in the surface microlayer yet the enrichment of cultivable
353	bacterial cells was much more variable, with enrichment factors ranging from 0.5 to
354	191 (23). High numbers of cultivable bacterial cells in the surface microlayer
355	compared to subsurface waters are often reported $(1, 2, 43)$.
356	
357	Bacterial community structure
358	Unlike bacterial cell abundance, bacterial community structure was consistently
359	different in the surface microlayer compared to subsurface water. Surface microlayer
360	samples collected using both membranes and a mesh screen showed a reproducibly
361	distinct bacterioneuston in the mesocosms. Previous studies have characterised the
362	marine bacterioneuston and cognate subsurface bacterioplankton in the North Sea
363	(13), the Mediterranean Sea (1) and Pacific Ocean (7). In the North Sea and Pacific
364	Ocean studies the bacterioneuston community structure was distinct compared to that
365	of the bacterioplankton 1 m below the surface (7, 13). Conversely, the Mediterranean
366	Sea study reported no consistent differences between communities (1).
367	The method of surface microlayer sampling is important in the study of the
368	bacterioneuston (7). Even though the sea surface microlayer is considered the top 1
369	mm of the ocean, it is operationally defined by sampling depth (26). We used a mesh
370	screen (sampling depth ~400 μm) and membranes (sampling depth ~ 40 μm) to
371	determine bacterial community structure. Previous comparison of membrane-
372	collected and mesh screen-collected samples from an estuarine surface microlayer
272	

the surface microlayer were the same as those in subsurface (0.5 m) samples (23).

Bacterial cell counts by flow cytometry analysis from the same samples did have low

- 373 showed samples collected using a mesh screen under-represent the bacterioneuston
- 374 because samples also contain subsurface water, therefore "diluting" the

350

351

375	bacterioneuston sample (7). In this study, at the start of the experiment, the mesh
376	screen-collected bacterial community structures were more similar to the subsurface
377	(bacterioplankton) than to the membrane-collected samples (bacterioneuston). This
378	however changed during the experiment with mesh screen-collected samples
379	becoming more similar to the membrane-collected samples (Figures 4 and 5). This
380	indicated an enrichment effect in the surface microlayer, causing the bacterial
381	communities sampled using the mesh screen to change from bacterioplankton-like to
382	bacterioneuston-like during the experiment.
383	The proposed enrichment of the surface microlayer and bacterioneuston may
384	be due to the physical nature of the mesososms used in this experiment. Even though
385	the mesocosms were mixed continuously they were calmer than the open fjord.
386	Examination of surface microlayer samples offshore of Barcelona showed, that under
387	calm conditions (low wind speed and cloudless skies) the enrichment of several
388	parameters in the surface microlayer, including heterotrophic Bacteria counts,
389	chlorophyll-a and suspended particle matter, increasing substantially (23), supporting
390	our observations in the mesocosms.
391	The methodological approaches used to compare the community structure of
392	the bacterioneuston and the bacterioplankton can also influence data interpretation.
393	Agogue et al (2005) used similarity values based upon Jaccard coefficients of SSCP
394	profiles from surface microlayer and subsurface water samples collected in the
395	Mediterranean Sea. Jaccard coefficients are absence/presence based and do not
396	consider relative abundances (21). Franklin et al (2005) and Cunliffe et al (2009) used
397	16S rRNA gene clone libraries and DGGE profiles assessed using Pearson
398	correlations, both of which take into account the relative abundances between
399	samples. In this study we also included changes in relative abundances (T-RFs and

400	DGGE bands). The increased resolution of community structure comparisons made
401	using relative abundances versus comparisons made using absence/presence data may,
402	in part, account for the conclusions of Agogue et al (2005).
403	In this study, bacterial community structure dynamics in each mesocosm were
404	synchronous, showing consistent patterns between replicates (Figures 4 and 5). The
405	bacterioneuston communities at two sites on either side of Oahu Island were more
406	similar to each other than to their cognate subsurface water bacterioplankton
407	communities just 0.4 m below, also indicating non-random assembly of the surface
408	microlayer community (7). Synchronicity of discrete bacterial communities, although
409	poorly understood, is very important, as concordant community dynamics suggests
410	the community structure patterns that emerge are controlled and are not random (24).
411	Therefore, if the bacterioneuston community structure is controlled by the
412	environment and is not random, as our data suggest, then the sea surface microlayer is
413	indeed an important ecological zone of the water column.
414	Five dominant DGGE bands in the surface microlayer were sequenced and
415	identified (Figure 5 and Table 1). The bands were very similar to just two families,
416	Flavobacteriaceae (Bands 1 and 2) and Alteromonadaceae (Bands 3, 4 and 5). The
417	genera Alteromonas and Glaciecola (Alteromonadales, Alteromonadaceae) were also
418	prevalent in surface microlayer samples collected from the marine end of Blyth
419	Estuary on the North East Coast of the UK (10). A previous study has also showed the
420	closely related genus Pseudoalteromonas (Alteromonadales,
421	Pseudoalteromonadaceae) dominated surface microlayer samples collected from the
422	North Sea, close to the coast of the UK (13).
423	
424	Bacterial cell abundance compared to community structure

425	Bacterioplankton in the water column include both free-living and cells attached to
426	several possible surfaces including phytoplankton (25) and marine gels (3). Marine
427	gels are a significant component of the sea surface microlayer, giving it a gelatinous
428	structure (8, 40, 46). Surface microlayer samples collected from the same mesocosms
429	in this study were enriched with transparent exopolymer gel particles (9). Therefore,
430	in the sea surface microlayer more microorganisms maybe attached than free-living
431	(8). Analysis of free-living and attached bacterioplankton communities co-occurring
432	in the water column show that both temporal variability and diversity in the attached
433	community is higher than in the free-living bacterial community (37) and specific
434	attached bacterial communities can develop (12).
435	The two standard marine microbial ecology approaches used in this study,
436	flow cytometry and community profiling (T-RFLP and DGGE), inherently analyse
437	different components of the free-living and attached bacterial cell pools. We filtered
438	the water samples for DNA extraction and subsequent community profiling, therefore
439	all particles in the water sample > $0.2 \ \mu m$ were analysed by T-RFLP and DGGE, both
440	free-living and attached bacterial cell pools. However, flow cytometry only counts the
441	free-living bacterial cells. This may contribute towards the observations that there are
442	no differences in bacterial cell abundance between the surface microlayer and
443	subsurface water (free-living only), yet there are distinct and consistent differences in
444	the bacterial community structures (free-living and attached). This may also be
445	responsible for the differences reported between flow cytometry bacterial cell counts
446	and bacterial colony forming unit counts in samples collected in the Mediterranean
447	Sea by Joux <i>et al</i> (2006).
448	

449 CONCLUSIONS

450 The similar dynamics of bacterial cell numbers and community structure between 451 replicate mesocosms described in this study shows how conserved patterns can 452 emerge in bacterial systems such as the sea surface microlayer. These data indicate 453 that the bacterial community structure patterns witnessed in the sea surface microlayer 454 are determined by environmental forces and are not idiosyncratic. This has important 455 implications for marine microbiological research as it is empirical evidence that 456 supports the hypothesis that the surface ocean, particularly the sea surface microlayer, 457 is much more structured than previously thought. 458 459 **ACKNOWLEDGMENTS** 460 This work was supported by the Natural Environment Research Council (UK) through 461 the project – SOLAS Bergen Mesocosm experiment (NE/E011446/1), which is part of 462 the NERC-Surface Ocean Lower Atmosphere Study (SOLAS) directed programme. 463 We thank all the people involved in the project who helped with the 464 preparation and sampling of the mesocosms, including Agnes Aadnesen (University 465 of Bergen). We thank Mikal Heldal, Jorun Egge (University of Bergen), Gill Malin 466 (University of East Anglia) and Ian Joint (Plymouth Marine Laboratory) for 467 invaluable advice concerning the set-up and management of mesocosm experiments at 468 Espeland. We also thank Linda Fonnes at the Institute of Marine Research, Bergen, 469 for inorganic nutrient analysis.

470

471 **REFERENCES**

472	1.	Agogue, H., E. O. Casamayor, M. Bourrain, I. Obernosterer, F. Joux, G.			
473		J. Herndl, and P. Lebaron. 2005. A survey on bacteria inhabiting the sea			
474		surface microlayer of coastal ecosystems. FEMS Microbiology Ecology			
475		54: 269-80.			
476	2.	Agogue, H., E. O. Casamayor, F. Joux, I. Obernosterer, C. Dupuy, F.			
477		Lantoine, P. Catala, M. G. Weinbauer, T. Reinthaler, G. J. Herndl, and P.			
478		Lebaron. 2004. Comparison of samplers for the biological characterization of			
479		the sea surface microlayer. Limnology and Oceanography Methods 2:213-225.			
480	3.	Alldredge, A. L., U. Passow, and B. E. Logan. 1993. The abundance and			
481		significance of a class of large, transparent organic particles in the ocean.			
482		Deep Sea Research Part I 40:1131-1140.			
483	4.	Allers, E., L. Gomaz-Consarnau, J. Pinhassi, J. M. Gasol, K. Simek, and			
484		J. Pernthaler. 2007. Response of Alteromonadaceae and Rhodobacteriaceae			
485		to glucose and phosphorus manipulation in marine mesocosms. Environ			
486		Microbiol 9: 2417-2429.			
487	5.	Auguet, J. C., and E. O. Casamayor. 2008. A hotspot for cold crenarchaeota			
488		in the neuston of high mountain lakes. Environ Microbiol 10:1080-1086.			
489	6.	Castberg, T., A. Larsen, R. A. Sandaa, C. P. D. Brussaard, J. K. Egge, M.			
490		Heldal, R. Thyrhaug, E. J. v. Hannen, and G. Bratbak. 2001. Microbial			
491		population dynamics and diversity during a bloom of the marine			
492		coccolithophorid Emiliania huxleyi (Haptophyta). Marine Ecology Progress			
493		Series 221: 39-46.			
494	7.	Cunliffe, M., E. Harrison, M. Salter, H. Schafer, R. C. Upstill-Goddard,			
495		and J. C. Murrell. 2009. Comparison and validation of sampling strategies			

496		for the molecular microbial ecological analysis of surface microlayers.		
497		Aquatic Microbial Ecology 57:69-77.		
498	8.	Cunliffe, M., and J. C. Murrell. 2009. The sea surface microlayer is a		
499		gelatinous biofilm The ISME Journal 3: 1001–1003.		
500	9.	Cunliffe, M., M. Salter, P. J. Mann, A. S. Whiteley, R. C. Upstill-		
501		Goddard, and J. C. Murrell. 2009. Dissolved organic carbon and bacterial		
502		populations in the gelatinous surface microlayer of a Norwegian fjord		
503		mesocosm. FEMS Microbiology Letters 299:248-254.		
504	10.	Cunliffe, M., H. Schafer, E. Harrison, S. Cleave, R. C. Upstill-Goddard,		
505		and J. C. Murrell. 2008. Phylogenetic and functional gene analysis of the		
506		bacterial and archaeal communities associated with the surface microlayer of		
507		an estuary. The ISME Journal 2:776-789.		
508	11.	Davis, C. O. 1982. The importance of understanding phytoplankton life		
509		strategies in the design of enclosure experiments p. 323-332. In G. D. Grice		
510		and M. R. Reeve (ed.), Marine Mesocosms Biological and Chemical Research		
511		in Experimental Ecosystems. Springer-Verlag, New York.		
512	12.	DeLong, E. F., D. G. Franks, and A. L. Alldredge. 1993. Phylogenetic		
513		diversity of aggregate-attached vs. free-living marine bacterial assemblages.		
514		Limnology and Oceanography 38:924-934.		
515	13.	Franklin, M. P., I. R. McDonald, D. G. Bourne, N. J. Owens, R. C. Upstill-		
516		Goddard, and J. C. Murrell. 2005. Bacterial diversity in the bacterioneuston		
517		(sea surface microlayer): the bacterioneuston through the looking glass.		
518		Environ Microbiol 7:723-36.		

519	14.	Fuhrman, J. A., I. Hewson, M. S. Schwalbach, M. S. Steele, J. A. Brown,		
520		and S. Naeem. 2006. Annually reoccurring bacterial communities are		
521		predictable from ocean conditions Proc Natl Acad Sci 103:13104-13109.		
522	15.	Fuhrman, J. A., and J. A. Steele. 2008. Community structure of marine		
523		bacterioplankton: patterns, networks, and relationships to function. Aquatic		
524		Microbial Ecology 53: 69-81.		
525	16.	Gasol, J. M., U. L. Zweifel, F. Peters, J. A. Furhman, and A. Hagstrom.		
526		1999. Significance of size and nucleic acid content heterogeneity as measured		
527		by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol		
528		65: 4475-4483.		
529	17.	Gasparovic, B., Z. Kozarac, A. Saliot, B. Cosovi, and D. Mobius. 1998.		
530		Physicochemical characterization of natural and ex-situ reconstructed sea-		
531		surface microlayers. J Colloid Interface Sci 208:191-202.		
532	18.	Grasshoff, K., K. Kremling, M. Ehrhardt, and L. G. Anderson. 1999.		
533		Methods of seawater analysis. Wiley-VCH, Weinheim.		
534	19.	Hervas, A., and E. O. Casamayor. 2008. High similarity between		
535		bacterioneuston and airborne bacterial community compositions in a high		
536		mountain lake area FEMS Microbial Ecology 67:219-228.		
537	20.	Hewson, I., J. A. Steele, D. G. Capone, and J. A. Furhman. 2006. Temporal		
538		and spatial scales of variation in bacterioplankton assemblages of oligotrophic		
539		waters. Marine Ecology Progress Series 311:67-77.		
540	21.	Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bull Soc		
541		Vaudoise Sci Nat 44:223-270.		

542	22.	Jensen, L. M. 1983. Phytoplankton release of extracellular organic carbon,		
543		molecular weight composition and bacterial assimilation. Marine Ecology		
544		Progress Series 11:39-48.		
545	23.	Joux, F., H. Agogue, I. Obernosterer, C. Dupuy, T. Reinthaler, G. J.		
546		Herndl, and P. Lebaron. 2006. Microbial community structure in the sea		
547		surface microlayer at two contrasting coastal sites in the northwestern		
548		Mediterranean Sea. Aquatic Microbial Ecology 42:91-104.		
549	24.	Kent, A. D., A. C. Yannarell, J. A. Rusak, E. W. Triplett, and K. D.		
550		McMahon. 2007. Synchrony in aquatic microbial community dynamics.		
551		ISME Journal 1:38–47.		
552	25.	Kogure, K., U. Simidu, and N. Taga. 1981. Bacterial attachment to		
553		phytoplankton in sea water. Journal of Experimental Marine Biology and		
554		Ecology 56: 197-204.		
555	26.	Liss, P. S., and R. A. Duce. 2005. The sea surface and global change.		
556		Cambridge University Press, UK.		
557	27.	Long, R. A., and F. Azam. 2001. Microscale patchiness of bacterioplankton		
558		assemblage richness in seawater. Aquatic Microbial Ecology 26:103-113.		
559	28.	Marshall, H. G., and L. Burchardt. 2005. Neuston: Its definition with a		
560		historical review regarding its concept and community structure. Archiv Fur		
561		Hydrobiologie 164: 429-448.		
562	29.	Martinez-Martinez, J., S. Norland, T. F. Thingstad, D. C. Schroeder, G.		
563		Bratbak, W. H. Wilson, and A. Larsen. 2006. Variability in microbial		
564		population dynamics between similarly perturbed mesocosms. Journal of		
565		Plankton Research 28:1-9.		

566	30.	Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of		
567		complex microbial populations by denaturing gradient gel electrophoresis		
568		analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.		
569		Appl Environ Microbiol 59: 695-700.		
570	31.	Naumann, E. 1917. Beiträge zur kenntnis des teichnanoplanktons. II. Über		
571		das neuston des süßwasser. Biol Zentbl 37:98-106.		
572	32.	Pernthaler, J. 2005. Predation on prokaryotes in the water column and its		
573		ecological implications. Nature Reviews Microbiology 3: 537-546.		
574	33.	Pettersson, H., F. Gross, and F. Koczy. 1939. Large-scale plankton culture.		
575		Nature 144:332-333.		
576	34.	Pommier, T., B. Canback, L. Riemann, K. H. Bostrom, K. Simu, P.		
577		Lunberg, A. Tunlid, and Å. Hagstrom. 2007. Global patterns of diversity		
578		and community structure in marine bacterioplankton. Molecular Ecology		
579		16: 867–880		
580	35.	Redfield, A. C. 1934. On the proportions of organic derivations in sea water		
581		and their relation to the composition of plankton, p. 177-192. In R. J. Daniel		
582		(ed.), James Johnstone Memorial Volume. University Press of Liverpool.		
583	36.	Riemann, L., G. F. Steward, and F. Azam. 2000. Dynamics of bacterial		
584		community compostion and activity during a mesocosm diatom bloom. Appl		
585		Environ Microbiol 66:578-587.		
586	37.	Rooney-Varga, J. N., M. W. Giewat, M. C. Savin, S. Sood, M. LeGresley,		
587		and J. L. Martin. 2005. Links between phytoplankton and bacterial		
588		community dynamics in a coastal marine environment. Microbial Ecology		
589		49: 163-175.		

590	38.	Sapp, M., A. Wichels, K. H. Wiltshire, and G. Gerdts. 2007. Bacterial			
591		community dynamics during the winter-spring transition in the North Sea.			
592		FEMS Microbial Ecology 59: 622-637.			
593	39.	Shaw, P. J. A. 2003. Multivariate statistics for the environmental sciences.			
594		Arnold, London.			
595	40.	Sieburth, J. M. 1983. Microbiological and organic-chemical processes in the			
596		surface and mixed layers, p. 121-172. In P. S. Liss and W. G. N. Slinn (ed.),			
597		Air-Sea Exchange of Gases and Particles. Reidel Publishers Co, Hingham,			
598		MA.			
599	41.	Suzuki, M., M. S. Rappe, and S. J. Giovannoni. 1998. Kinetic basis in			
600		estimates of coastal picoplankton community structure obtained by			
601		measurements of small-subunit rRNA gene PCR amplicon length			
602		heterogeneity. Appl Environ Microbiol 64:4522-4529.			
603	42.	Tarran, G. A., J. L. Heywood, and M. V. Zubkov. 2006. Latitudinal			
604		changes in the standing stock of nano- and picoeukaryotic phytoplankton in			
605		the Atlantic Ocean. Deep Sea Research Part II: Topical Studies in			
606		Oceanography 53: 1516-1529.			
607	43.	Tsyban, A. V. 1971. Marine bacterioneuston. Journal of Oceanographic			
608		Society of Japan 27:56-66.			
609	44.	Vaque, D., E. O. Casamayor, and J. M. Gasol. 2001. Dynamics of whole			
610		community bacterial production and grazing losses in seawater incubations as			
611		related to the changes in the proportions of bacteria with different DNA			
612		content. Aquatic Microbial Ecology 25:163-177.			
613	45.	Williams, P. M., A. F. Carlucci, S. M. Henrichs, E. S. Vanvleet, S. G.			
614		Horrigan, F. M. H. Reid, and K. J. Robertson. 1986. Chemical and			

615		microbiological studies of sea-surface films in the southern gulf of California		
616		and off the west-coast of Baja-California. Marine Chemistry 19:17-98.		
617	46.	Wurl, O., and M. Holmes. 2008. The gelatinous nature of the sea-surface		
618		microlayer. Marine Chemistry 110:89-97.		
619	47.	Zhang, R., M. Weinbauer, and P. Qian. 2007. Viruses and flagellates		
620		sustain apparent richness and reduce biomass accumulation of		
621		bacterioplankton in coastal marine waters. Environ Microbiol 9:3008-3018.		
622	48.	Zhengbin, Z., L. Liansheng, W. Zhijian, L. Jun, and D. Haibing. 1998.		
623		Physicochemical studies of the sea surface microlayer. J Colloid Interface Sci		
624		204: 294-9.		
625	49.	Zubkov, M. V., and G. A. Tarran. 2008. High bacterivory by the smallest		
626		phytoplankton in the North Atlantic Ocean. Nature 455: 224-226.		
627	50.	Zubkov, M. V., G. A. Tarran, I. Mary, and B. M. Fuchs. 2008. Differential		
628		microbial uptake of dissolved amino acids and amino sugars in surface waters		
629		of the Atlantic Ocean. Journal of Plankton Research 30:211-220.		
630				

Table 1. Sequence similarities of excised 16S rRNA gene DGGE bands in Figure 5.

		% similarity	
Band	BLAST Match	(no. of bases)	Taxanomic grouping
1	Dokdonia donghaensis PRO95 (FJ627052)	100 (158)	Flavobacteria, Flavobacteriales, Flavobacteriaceae
2	Krokinobacter genikus Cos-13 (AB198086)	100 (158)	Flavobacteria, Flavobacteriales, Flavobacteriaceae
3	Alteromonas sp. BCw006 (FJ889589)	100 (163)	Gammaproteobacteria, Alteromonadales, Alteromonadaceae
4	Alteromonas sp. Oct07-MA-2BB-3 (GQ215064)	100 (163)	Gammaproteobacteria, Alteromonadales, Alteromonadaceae
5	Glaciecola nitratireducens FR1064 (AY787042)	98 (161)	Gammaproteobacteria, Alteromonadales, Alteromonadaceae

FIGURE LEGENDS

Figure 1. (A) Photograph showing the mesocosms used in this study. Twelve mesocosms were divided into three larger containers. (B) Each mesocosm was filled sequentially A to L. Control mesocosms were A, C, E, G, I and K. The phytoplankton bloom was induced in nutrient amended mesocosms B, D, F, H, J and L.

Figure 2. Dissolved inorganic nutrient concentration changes in control (\Box) and nutrient amended mesocosms (**■**). Mean value plotted (n = 6) with the error bar representing the standard error.

Figure 3. Changes in abundances of phytoplankton and bacterial cells in the surface microlayer (\blacktriangle) and subsurface water (\blacksquare). The surface microlayer was sampled using a mesh screen. The control mesocosm samples have clear symbols and the nutrient amended mesocosm samples have solid symbols. Mean value plotted (n = 6) with the error bar representing the standard error.

Figure 4. Ordination diagram from PCA of bacterial T-RFLP profiles. Samples were collected on day two (red), day five (blue) and day ten (green). Subsurface water (■) was collected using a siphon and the surface microlayer was sampled using two methods: a mesh screen (▲) and polycarbonate membranes (●). The control mesocosm samples have clear symbols and the nutrient amended mesocosm samples have solid symbols.

Figure 5. Bacterial DGGE profiles from day two, day five and day ten. DGGE profiles show each replicate from the subsurface water (SS) and from the surface

microlayer sampled using a mesh screen (MS) and polycarbonate membranes (PC). Beside each DGGE profile is the associated UPGMA dendrogram showing the similarity of the lanes in the DGGE profiles. The arrows show which DGGE bands were excised and sequenced (Table 1).

Β.

Figure 1.

Figure 2.

Figure 4.

AEM Accepts published online ahead of print