4,778 research outputs found

    Climate change in CCAFS regions: Recent trends, current projections, crop-climate suitability, and prospects for improved climate model information

    Get PDF
    Good climate projections for agriculture can help guide investments in risk management and adaptation. New reports offer insights into the reliability of future climate projections for agriculture, and show how to make the most of current data

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    Mass transfer dynamics in double degenerate binary systems

    Full text link
    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.Comment: 5 pages, 3 figures, for associated movie files, see http://pandora.jacobs-university.de/~mdan/WD_coalescences.htm, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    Magnetic properties of submicron Co islands and their use as artificial pinning centers

    Full text link
    We report on the magnetic properties of elongated submicron magnetic islands and their influence on a superconducting film. The magnetic properties were studied by magnetization hysteresis loop measurements and scanning-force microscopy. In the as-grown state, the islands have a magnetic structure consisting of two antiparallel domains. This stable domain configuration has been directly visualized as a 2x2-checkerboard pattern by magnetic-force microscopy. In the remanent state, after magnetic saturation along the easy axis, all islands have a single-domain structure with the magnetic moment oriented along the magnetizing field direction. Periodic lattices of these Co islands act as efficient artificial pinning arrays for the flux lines in a superconducting Pb film deposited on top of the Co islands. The influence of the magnetic state of the dots on their pinning efficiency is investigated in these films, before and after the Co dots are magnetized.Comment: 6 pages including figure

    Einstein boundary conditions for the 3+1 Einstein equations

    Full text link
    In the 3+1 framework of the Einstein equations for the case of vanishing shift vector and arbitrary lapse, we calculate explicitly the four boundary equations arising from the vanishing of the projection of the Einstein tensor along the normal to the boundary surface of the initial-boundary value problem. Such conditions take the form of evolution equations along (as opposed to across) the boundary for certain components of the extrinsic curvature and for certain space-derivatives of the intrinsic metric. We argue that, in general, such boundary conditions do not follow necessarily from the evolution equations and the initial data, but need to be imposed on the boundary values of the fundamental variables. Using the Einstein-Christoffel formulation, which is strongly hyperbolic, we show how three of the boundary equations should be used to prescribe the values of some incoming characteristic fields. Additionally, we show that the fourth one imposes conditions on some outgoing fields.Comment: Revtex 4, 6 pages, text and references added, typos corrected, to appear in Phys. Rev.

    Warped Higgsless Models with IR--Brane Kinetic Terms

    Full text link
    We examine a warped Higgsless SU(2)L×SU(2)R×U(1)B−LSU(2)_L\times SU(2)_R\times U(1)_{B-L} model in 5--dd with IR(TeV)--brane kinetic terms. It is shown that adding a brane term for the U(1)B−LU(1)_{B-L} gauge field does not affect the scale (∌2−3\sim 2-3 TeV) where perturbative unitarity in WL+WL−→WL+WL−W_L^+ W_L^- \to W_L^+ W_L^- is violated. This term could, however, enhance the agreement of the model with the precision electroweak data. In contrast, the inclusion of a kinetic term corresponding to the SU(2)DSU(2)_D custodial symmetry of the theory delays the unitarity violation in WL±W_L^\pm scattering to energy scales of ∌6−7\sim 6-7 TeV for a significant fraction of the parameter space. This is about a factor of 4 improvement compared to the corresponding scale of unitarity violation in the Standard Model without a Higgs. We also show that null searches for extra gauge bosons at the Tevatron and for contact interactions at LEP II place non-trivial bounds on the size of the IR-brane terms.Comment: 23 pages, 8 figure

    Cauchy boundaries in linearized gravitational theory

    Get PDF
    We investigate the numerical stability of Cauchy evolution of linearized gravitational theory in a 3-dimensional bounded domain. Criteria of robust stability are proposed, developed into a testbed and used to study various evolution-boundary algorithms. We construct a standard explicit finite difference code which solves the unconstrained linearized Einstein equations in the 3+1 formulation and measure its stability properties under Dirichlet, Neumann and Sommerfeld boundary conditions. We demonstrate the robust stability of a specific evolution-boundary algorithm under random constraint violating initial data and random boundary data.Comment: 23 pages including 3 figures and 2 tables, revte

    Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets

    Full text link
    Magnetization switching in highly anisotropic single-domain ferromagnets has been previously shown to be qualitatively described by the droplet theory of metastable decay and simulations of two-dimensional kinetic Ising systems with periodic boundary conditions. In this article we consider the effects of boundary conditions on the switching phenomena. A rich range of behaviors is predicted by droplet theory: the specific mechanism by which switching occurs depends on the structure of the boundary, the particle size, the temperature, and the strength of the applied field. The theory predicts the existence of a peak in the switching field as a function of system size in both systems with periodic boundary conditions and in systems with boundaries. The size of the peak is strongly dependent on the boundary effects. It is generally reduced by open boundary conditions, and in some cases it disappears if the boundaries are too favorable towards nucleation. However, we also demonstrate conditions under which the peak remains discernible. This peak arises as a purely dynamic effect and is not related to the possible existence of multiple domains. We illustrate the predictions of droplet theory by Monte Carlo simulations of two-dimensional Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure
    • 

    corecore