7,818 research outputs found
New microelectronic power amplifier
Integrated push-pull power amplifier fabricated on a chip of silicon has interdigitated power transistors and is hermetically encapsulated in a beryllia flat package. It provides current output greater than the nominal 10 amperes from an input current drive of 1 ampere
Numerical Investigation on Flow Separation Control of Low Reynolds Number Sinusoidal Aerofoils
The paper presents a computational analysis of the characteristics of a NACA 634-
021 aerofoil incorporated with sinusoidal leading-edge protuberances at Re = 14,000.
The protuberances are characterized by an amplitude and wavelength of 12% and 50%
of the aerofoil chord length respectively. An unsteady Reynolds Average Navier Stokes
(RANS) analysis of the full-span aerofoils was carried out using Transition SST (Shear
Stress Transport) turbulence model across five different angles-of-attack (AOA).
Comparisons with previous experimental results reported good qualitative agreements
in terms of flow separation when the aerofoils are pitched at higher AOAs. Results
presented here comprised of near-wall flow visualizations of the flow separation bubble
at the peaks and troughs of the protuberances. Additionally, results indicate that the
aerofoil with leading-edge protuberances displayed distinctive wall shear streamline and
iso-contour characteristics at different span-wise positions. This implies that even at a
low Reynolds number, implementations of these leading-edge protuberances could have
positive or adverse effects on flow separation
Binding interactions of Peptide Aptamers
Peptide aptamers are short amino acid chains that are capable of binding specifically to ligands in the same way as their much larger counterparts, antibodies. Ligands of therapeutic interest that can be targeted are other peptide chains or loops located on the surface of protein receptors (e.g., GCPR), which take part in cell-to-cell communications either directly or via the intermediary of hormones or signalling molecules. To confer on aptamers the same sort of conformational rigidity that characterises an antibody binding site, aptamers are often constructed in the form of cyclic peptides, on the assumption that this will encourage stronger binding interactions than would occur if the aptamers were simply linear chains. However, no formal studies have been conducted to confirm the hypothesis that linear peptides will engage in stronger binding interactions with cyclic peptides than with other linear peptides. In this study, the interaction of a model cyclic decamer with a series of linear peptide constructs was compared with that of a linear peptide with the same sequence, showing that the cyclic configuration does confer benefits by increasing the strength of binding
On Approximating the Number of -cliques in Sublinear Time
We study the problem of approximating the number of -cliques in a graph
when given query access to the graph.
We consider the standard query model for general graphs via (1) degree
queries, (2) neighbor queries and (3) pair queries. Let denote the number
of vertices in the graph, the number of edges, and the number of
-cliques. We design an algorithm that outputs a
-approximation (with high probability) for , whose
expected query complexity and running time are
O\left(\frac{n}{C_k^{1/k}}+\frac{m^{k/2}}{C_k}\right)\poly(\log
n,1/\varepsilon,k).
Hence, the complexity of the algorithm is sublinear in the size of the graph
for . Furthermore, we prove a lower bound showing that
the query complexity of our algorithm is essentially optimal (up to the
dependence on , and ).
The previous results in this vein are by Feige (SICOMP 06) and by Goldreich
and Ron (RSA 08) for edge counting () and by Eden et al. (FOCS 2015) for
triangle counting (). Our result matches the complexities of these
results.
The previous result by Eden et al. hinges on a certain amortization technique
that works only for triangle counting, and does not generalize for larger
cliques. We obtain a general algorithm that works for any by
designing a procedure that samples each -clique incident to a given set
of vertices with approximately equal probability. The primary difficulty is in
finding cliques incident to purely high-degree vertices, since random sampling
within neighbors has a low success probability. This is achieved by an
algorithm that samples uniform random high degree vertices and a careful
tradeoff between estimating cliques incident purely to high-degree vertices and
those that include a low-degree vertex
A new efficient method for determining weighted power spectra: detection of low-frequency solar p-modes by analysis of BiSON data
We present a new and highly efficient algorithm for computing a power
spectrum made from evenly spaced data which combines the noise-reducing
advantages of the weighted fit with the computational advantages of the Fast
Fourier Transform (FFT). We apply this method to a 10-year data set of the
solar p-mode oscillations obtained by the Birmingham Solar Oscillations Network
(BiSON) and thereby uncover three new low-frequency modes. These are the l=2,
n=5 and n=7 modes and the l=3, n=7 mode. In the case of the l=2, n=5 modes,
this is believed to be the first such identification of this mode in the
literature. The statistical weights needed for the method are derived from a
combination of the real data and a sophisticated simulation of the instrument
performance. Variations in the weights are due mainly to the differences in the
noise characteristics of the various BiSON instruments, the change in those
characteristics over time and the changing line-of-sight velocity between the
stations and the Sun. It should be noted that a weighted data set will have a
more time-dependent signal than an unweighted set and that, consequently, its
frequency spectrum will be more susceptible to aliasing.Comment: 11 pages, 7 Figures, accepted for publication in MNRAS, Figure 6 had
to be reduced in size to upload and so may be difficult to view on screen in
.ps versio
Integrated power amplifier Final report, Mar. 1964 - Sep. 1965
Integrated power amplifier desig
Development and fabrication of a high power silicon switching transistor Final report, Aug. 1965 - Apr. 1966
High-current, low-voltage silicon switching transistor redesigned for obtaining lowest possible saturation dro
High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization
We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in × direction at velocities of ∼10 km s−1 and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasma conductivity speeds it up
Silver Sleigh Bells / words by E. T. Paull
Key of G. Cover: a drawing of carriage and a garland of Christmas decoration; Publisher: E.T. Paull Music (New York)https://egrove.olemiss.edu/sharris_b/1076/thumbnail.jp
- …