22 research outputs found

    On Approximating the Number of kk-cliques in Sublinear Time

    Full text link
    We study the problem of approximating the number of kk-cliques in a graph when given query access to the graph. We consider the standard query model for general graphs via (1) degree queries, (2) neighbor queries and (3) pair queries. Let nn denote the number of vertices in the graph, mm the number of edges, and CkC_k the number of kk-cliques. We design an algorithm that outputs a (1+ε)(1+\varepsilon)-approximation (with high probability) for CkC_k, whose expected query complexity and running time are O\left(\frac{n}{C_k^{1/k}}+\frac{m^{k/2}}{C_k}\right)\poly(\log n,1/\varepsilon,k). Hence, the complexity of the algorithm is sublinear in the size of the graph for Ck=ω(mk/21)C_k = \omega(m^{k/2-1}). Furthermore, we prove a lower bound showing that the query complexity of our algorithm is essentially optimal (up to the dependence on logn\log n, 1/ε1/\varepsilon and kk). The previous results in this vein are by Feige (SICOMP 06) and by Goldreich and Ron (RSA 08) for edge counting (k=2k=2) and by Eden et al. (FOCS 2015) for triangle counting (k=3k=3). Our result matches the complexities of these results. The previous result by Eden et al. hinges on a certain amortization technique that works only for triangle counting, and does not generalize for larger cliques. We obtain a general algorithm that works for any k3k\geq 3 by designing a procedure that samples each kk-clique incident to a given set SS of vertices with approximately equal probability. The primary difficulty is in finding cliques incident to purely high-degree vertices, since random sampling within neighbors has a low success probability. This is achieved by an algorithm that samples uniform random high degree vertices and a careful tradeoff between estimating cliques incident purely to high-degree vertices and those that include a low-degree vertex

    Conjectures on Convergence and Scalar Curvature

    Full text link
    Here we survey the compactness and geometric stability conjectures formulated by the participants at the 2018 IAS Emerging Topics Workshop on {\em Scalar Curvature and Convergence}. We have tried to survey all the progress towards these conjectures as well as related examples, although it is impossible to cover everything. We focus primarily on sequences of compact Riemannian manifolds with nonnegative scalar curvature and their limit spaces. Christina Sormani is grateful to have had the opportunity to write up our ideas and has done her best to credit everyone involved within the paper even though she is the only author listed above. In truth we are a team of over thirty people working together and apart on these deep questions and we welcome everyone who is interested in these conjectures to join us.Comment: Please email us any comments or corrections. 57 pages, 20 figures, IAS Emerging Topics on Scalar Curvature and Convergenc

    New Loop Representations for 2+1 Gravity

    Get PDF
    Since the gauge group underlying 2+1-dimensional general relativity is non-compact, certain difficulties arise in the passage from the connection to the loop representations. It is shown that these problems can be handled by appropriately choosing the measure that features in the definition of the loop transform. Thus, ``old-fashioned'' loop representations - based on ordinary loops - do exist. In the case when the spatial topology is that of a two-torus, these can be constructed explicitly; {\it all} quantum states can be represented as functions of (homotopy classes of) loops and the scalar product and the action of the basic observables can be given directly in terms of loops.Comment: 28pp, 1 figure (postscript, compressed and uuencoded), TeX, Pennsylvania State University, CGPG-94/5-
    corecore