1,370 research outputs found

    System thermal-hydraulic modelling of the phénix dissymmetric test benchmark

    Get PDF
    Phénix is a French pool-type sodium-cooled prototype reactor; before the definitive shutdown, occurred in 2009, a final set of experimental tests are carried out in order to increase the knowledge on the operation and the safety aspect of the pool-type liquid metal-cooled reactors. One of the experiments was the Dissymmetric End-of-Life Test which was selected for the validation benchmark activity in the frame of SESAME project. The computer code validation plays a key role in the safety assessment of the innovative nuclear reactors and the Phénix dissymmetric test provides useful experimental data to verify the computer codes capability in the asymmetric thermal-hydraulic behaviour into a pool-type liquid metal-cooled reactor. This paper shows the comparison of the outcomes obtained with six different System Thermal-Hydraulic (STH) codes: RELAP5-3D©, SPECTRA, ATHLET, SAS4A/SASSYS-1, ASTEC-Na and CATHARE. The nodalization scheme of the reactor was individually achieved by the participants; during the development of the thermal-hydraulic model, the pool nodalization methodology had a special attention in order to investigate the capability of the STH codes to reproduce the dissymmetric effects which occur in each loop and into pools, caused by the azimuthal asymmetry of the boundary conditions. The modelling methodology of the participants is discussed and the main results are compared in this paper to obtain useful guide lines for the future modelling of innovative liquid metal pool-type reactors

    About disposition of energy levels

    Full text link
    The unique properties of central potential of the form −ÎČe−rrÎł-\beta e^{-r}r^{\gamma} were studied using the recently developed critical parameter technique. The particular cases of Îł=0\gamma=0 and Îł=−1\gamma=-1 yield, respectively, the exponential and Yukawa potentials widely used in the atomic, molecular and nuclear physics. We found different behavior of the energy levels of this potential for three different ranges of the value of Îł\gamma. For γ≄0\gamma\geq0 it was found that the energy of bound states with the same principal quantum number NN decreases with increasing angular momentum ℓ\ell. The Gaussian and Woods-Saxon potentials also show this behavior. On the contrary, for −2â‰€Îłâ‰€âˆ’1-2\leq\gamma\leq-1 increasing ℓ\ell gives a higher energy, resembling the Hulthen potential. However, a potential with −1<Îł<0-1<\gamma<0 possesses mixed properties, which give rise to several interesting results. For one, the order of energy levels with different quantum numbers is not preserved when varying the parameter ÎČ\beta. This leads to a quantum degeneracy of the states, and in fact, for a given value of Îł\gamma we can find the values ÎČthr\beta_{thr} for which two energy levels with different quantum numbers coincide. Another interesting phenomena is the possibility, for some values of Îł\gamma in this range, for two new energy levels with different quantum numbers to appear simultaneously when ÎČ\beta reaches their common critical value.Comment: 10 pages, 3 table

    Scorpion Biodiversity and Interslope Divergence at “Evolution Canyon”, Lower Nahal Oren Microsite, Mt. Carmel, Israel

    Get PDF
    BACKGROUND: Local natural laboratories, designated by us as the "Evolution Canyon" model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the "African savannah-like" south-facing slopes (AS) in canyons north of the equator than by the opposite "European maquis-like" north-facing slopes (ES) is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought), due to their ability to adapt to dry environments. METHODOLOGY/PRINCIPAL FINDINGS: Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera), beetles (families Tenebrionidae, Dermestidae, Chrysomelidae), and grasshoppers (Orthoptera). CONCLUSIONS/SIGNIFICANCE: Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the "EC" valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern

    Modelling quasicrystals at positive temperature

    Full text link
    We consider a two-dimensional lattice model of equilibrium statistical mechanics, using nearest neighbor interactions based on the matching conditions for an aperiodic set of 16 Wang tiles. This model has uncountably many ground state configurations, all of which are nonperiodic. The question addressed in this paper is whether nonperiodicity persists at low but positive temperature. We present arguments, mostly numerical, that this is indeed the case. In particular, we define an appropriate order parameter, prove that it is identically zero at high temperatures, and show by Monte Carlo simulation that it is nonzero at low temperatures

    Electromagnetic Excitations and Responses in Nuclei from First Principles

    Get PDF
    We discuss the role of clustering on monopole, dipole, and quadrupole excitations in nuclei in the framework of the ab initio symmetry-adapted no-core shell model (SA-NCSM). The SA-NCSM starts from nucleon-nucleon potentials and, by exploring symmetries known to dominate the nuclear dynamics, can reach nuclei up through the calcium region by accommodating ultra-large model spaces critical to descriptions of clustering and collectivity. The results are based on calculations of electromagnetic sum rules and discretized responses using the Lanczos algorithm, that can be used to determine response functions, and for 4He are benchmarked against exact solutions of the hyperspherical harmonics method. In particular, we focus on He, Be, and O isotopes, including giant resonances and monopole sum rules.Comment: 6 pages, 4 figures, Proceedings of the Fourth International Workshop on State of the Art in Nuclear Cluster Physics, Galveston, TX, USA, May 13-18, 201

    Electromagnetic Excitations and Responses in Nuclei from First Principles

    Get PDF
    We discuss the role of clustering on monopole, dipole, and quadrupole excitations in nuclei in the framework of the ab initio symmetry-adapted no-core shell model (SA-NCSM). The SA-NCSM starts from nucleon-nucleon potentials and, by exploring symmetries known to dominate the nuclear dynamics, can reach nuclei up through the calcium region by accommodating ultra-large model spaces critical to descriptions of clustering and collectivity. The results are based on calculations of electromagnetic sum rules and discretized responses using the Lanczos algorithm, that can be used to determine response functions, and for 4He are benchmarked against exact solutions of the hyperspherical harmonics method. In particular, we focus on He, Be, and O isotopes, including giant resonances and monopole sum rules.Comment: 6 pages, 4 figures, Proceedings of the Fourth International Workshop on State of the Art in Nuclear Cluster Physics, Galveston, TX, USA, May 13-18, 201
    • 

    corecore