71 research outputs found

    Numerical Modelling and Validation of Mixed-Mode Fracture Tests to Adhesive Joints Using J-Integral Concepts

    Get PDF
    The interest in the design and numerical modelling of adhesively-bonded components and structures for industrial application is increasing as a research topic. Although research on joint failure under pure mode is widespread, applied bonded joints are often subjected to a mixed mode loading at the crack tip, which is more complex than the pure mode and affects joint strength. Failure of these joints under loading is the objective of predictions through mathematical and numerical models, the latter based on the Finite Element Method (FEM), using Cohesive Zone Modelling (CZM). The Single leg bending (bending) testing is among those employed to study mixed mode loading. This work aims to validate the application of FEM-CZM to SLB joints. Thus, the geometries used for experimental testing were reproduced numerically and experimentally obtained properties were employed in these models. Upon the validation of the numerical technique, a parametric study involving the cohesive laws’ parameters is performed, identifying the parameters with the most influence on the joint behaviour. As a result, it was possible to numerically model SLB tests of adhesive joints and estimate the mixed-mode behaviour of different adhesives, which enables mixed-mode modelling and design of adhesive structures.info:eu-repo/semantics/publishedVersio

    The African hind's (Cephalopholis taeniops, serranidae) use of artificial reefs off Sal Island (Cape Verde): a preliminary study based on acoustic telemetry

    Get PDF
    The African hind Cephalopholis taeniops (Valenciennes, 1828) is one of the most important commercial demersal species caught in the Cape Verde archipelago. The species is closely associated with hard substrate and is one of the main attractions for SCUBA divers. In January 2006 a former Soviet fishing vessel - the Kwarcit - was sunk off Santa Maria Bay (Sal Island). Young C. taeniops are commonly observed in this artificial reef (AR). In order to investigate the species' use of the AR, 4 specimens were captured and surgically implanted underwater with Vemco brand acoustic transmitters. The fish were monitored daily with an active telemetry receiver for one week after release. Simultaneously, an array of 3 passive VR2 / VR2W receivers was set for 63 days, registering data that allowed an analysis of spatial, daily and short term temporal activity patterns. The results showed site fidelity to the AR, with no migrations to the nearby natural reef. The method used allowed to register a consistent higher activity during daytime and a preference for the area opposite the dominant current

    Probabilistic analysis of degradation of façade claddings using Markov chain models

    Get PDF
    In this study, the time-dependent stochastic degradation of three types of claddings is analysed. For this purpose, 203 facžades with stone claddings(directly adhered to the substrate), 195 with adhered ceramic claddings and 220 with painted surfaces were analysed. All the facžades are located in Lisbon, Portugal. Their degradation condition was assessed through an extensive field work. Based on the data gathered, Markov chains are used to predict the degradation of claddings and to understand, in some detail, how the characteristics of the claddings contribute to the overall degradation. The results show that the distance from the sea and exposure to damp are significant to the degradation of all types of cladding. The type and size of stone plates also influence the degradation of stone claddings. The exposure to wind-rain action has a high impact on the degradation of ceramic claddings. The models proposed provide useful information on the probability of failure of the claddings; these results are fundamental in the context of insurance policies and in the definition of building maintenance plans

    A“Dirty” Footprint: Macroinvertebrate diversity in Amazonian Anthropic Soils

    Get PDF
    International audienceAmazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems. We found 673 morphospecies and, despite similar richness in ADEs (385 spp.) and reference soils (399 spp.), we identified a tenacious pre-Columbian footprint, with 49% of morphospecies found exclusively in ADEs. Termite and total macroinvertebrate abundance were higher in reference soils, while soil fertility and macroinvertebrate activity were higher in the ADEs, and associated with larger earthworm quantities and biomass. We show that ADE habitats have a unique pool of species, but that modern land use of ADEs decreases their populations, diversity, and contributions to soil functioning. These findings support the idea that humans created and sustained high-fertility ecosystems that persist today, altering biodiversity patterns in Amazonia

    Seismic assessment of a heavy-timber frame structure with ring-doweled moment-resisting connections

    Get PDF
    The performance of heavy-timber structures in earthquakes depends strongly on the inelastic behavior of the mechanical connections. Nevertheless, the nonlinear behavior of timber structures is only considered in the design phase indirectly through the use of an R-factor or a q-factor, which reduces the seismic elastic response spectrum. To improve the estimation of this, the seismic performance of a three-story building designed with ring-doweled moment resisting connections is analyzed here. Connections and members were designed to fulfill the seismic detailing requirements present in Eurocode 5 and Eurocode 8 for high ductility class structures. The performance of the structure is evaluated through a probabilistic approach, which accounts for uncertainties in mechanical properties of members and connections. Nonlinear static analyses and multi-record incremental dynamic analyses were performed to characterize the q-factor and develop fragility curves for different damage levels. The results indicate that the detailing requirements of Eurocode 5 and Eurocode 8 are sufficient to achieve the required performance, even though they also indicate that these requirements may be optimized to achieve more cost-effective connections and members. From the obtained fragility curves, it was verified that neglecting modeling uncertainties may lead to overestimation of the collapse capacity
    • 

    corecore