41 research outputs found

    Allergic Bronchopulmonary Aspergillosis–A Luminal Hypereosinophilic Disease With Extracellular Trap Cell Death

    Get PDF
    Allergic bronchopulmonary aspergillosis (ABPA) is characterized by an early allergic response and late-phase lung injury in response to repeated exposure to Aspergillus antigens, as a consequence of persistent fungal colonization of the airways. Here, we summarize the clinical and pathological features of ABPA, focusing on thick mucus plugging, a key observation in ABPA. Recent findings have indicated that luminal eosinophils undergo cytolytic extracellular trap cell death (ETosis) and release filamentous chromatin fibers (extracellular traps, ETs) by direct interaction with Aspergillus fumigatus. Production of ETs is considered to be an innate immune response against non-phagocytable pathogens using a “trap and kill” mechanism, although eosinophil ETs do not promote A. fumigatus damage or killing. Compared with neutrophils, eosinophil ETs are composed of stable and condensed chromatin fibers and thus might contribute to the higher viscosity of eosinophilic mucus. The major fate of massively accumulated eosinophils in the airways is ETosis, which potentially induces the release of toxic granule proteins and damage-associated molecular patterns, epithelial damage, and further decreases mucus clearance. This new perspective on ABPA as a luminal hypereosinophilic disease with ETosis/ETs could provide a better understanding of airway mucus plugging and contribute to future therapeutic strategies for this challenging disease

    Speech therapy for compensatory articulations and velopharyngeal function: a case report

    Get PDF
    The objective of this study was to describe the process of intensive speech therapy for a 6-year-old child using compensatory articulations while presenting with velopharyngeal insufficiency (VPI) and a history of cleft lip and palate. The correction of VPI was temporarily done with a pharyngeal obturator since the child presented with very little movement of the pharyngeal walls during speech, compromising the outcome of a possible pharyngeal flap procedure (pharyngoplasty). The program of intensive speech therapy involved 3 phases, each for duration of 2 weeks incorporating 2 daily sessions of 50 minutes of therapy. A total of 60 sessions of intervention were done with the initial goal of eliminating the use of compensatory articulations. Evaluation before the program indicated the use of co-productions (coarticulations) of voiceless plosive and fricative sounds with glottal stops (simultaneous production of 2 places of productions), along with weak intraoral pressure and hypernasality, all compromising speech intelligibility. To address place of articulation, strategies to increase intraoral air pressure were used along with visual, auditory and tactile feedback, emphasizing the therapy target and the air pressure and airflow during plosive and fricative sound productions. After the first two phases of the program, oral place of articulation of the targets were achieved consistently. During the third phase, velopharyngeal closure during speech was systematically addressed using a bulb reduction program with the objective of achieving velopharyngeal closure during speech consistently. After the intensive speech therapy program involving the use of a pharyngeal obturator, we observed absence of hypernasality and compensatory articulation with improved speech intelligibility

    Multifaceted Roles of Cysteinyl Leukotrienes in Eliciting Eosinophil Granule Protein Secretion

    No full text
    Cysteinyl leukotrienes (cysLTs) are cell membrane-impermeant lipid mediators that play major roles in the pathogenesis of eosinophilic inflammation and are recognized to act via at least 2 receptors, namely, cysLT1 receptor (cysLT1R) and cysLT2 receptor (cysLT2R). Eosinophils, which are granulocytes classically associated with host defense against parasitic helminthes and allergic conditions, are distinguished from leukocytes by their dominant population of cytoplasmic crystalloid (also termed secretory, specific, or secondary) granules that contain robust stores of diverse preformed proteins. Human eosinophils are the main source of cysLTs and are recognized to express both cysLTs receptors (cysLTRs) on their surface, at the plasma membrane. More recently, we identified the expression of cysLTRs in eosinophil granule membranes and demonstrated that cysLTs, acting via their granule membrane-expressed receptors, elicit secretion from cell-free human eosinophil granules. Herein, we review the multifaceted roles of cysLTs in eliciting eosinophil granule protein secretion. We discuss the intracrine and autocrine/paracrine secretory responses evoked by cysLTs in eosinophils and in cell-free extracellular eosinophil crystalloid granules. We also discuss the importance of this finding in eosinophil immunobiology and speculate on its potential role(s) in eosinophilic diseases

    Cysteinyl Leukotrienes in Eosinophil Biology: Functional Roles and Therapeutic Perspectives in Eosinophilic Disorders

    No full text
    Cysteinyl leukotrienes (cysLTs), LTC4, and its extracellular metabolites, LTD4 and LTE4, have varied and multiple roles in mediating eosinophilic disorders including host defense against parasitic helminthes and allergic inflammation, especially in the lung and in asthma. CysLTs are known to act through at least 2 receptors termed cysLT1 receptor (CysLT1R) and cysLT2 receptor (CysLT2R). Eosinophils contain a dominant population of cytoplasmic crystalloid granules that store various preformed proteins. Human eosinophils are sources of cysLTs and are known to express the two known cysLTs receptors (CysLTRs). CysLTs can have varied functions on eosinophils, ranging from intracrine regulators of secretion of granule-derived proteins to paracrine/autocrine roles in eosinophil chemotaxis, differentiation, and survival. Lately, it has been recognized the expression of CysLTRs in the membranes of eosinophil granules. Moreover, cysLTs have been shown to evoke secretion from isolated cell-free eosinophil granules operating through their receptors expressed on granule membranes. In this work, we review the functional roles of cysLTs in eosinophil biology. We review cysLTs biosynthesis, their receptors, and argue the intracrine and paracrine/autocrine responses induced by cysLTs in eosinophils and in isolated free extracellular eosinophil granules. We also examine and speculate on the therapeutic relevance of targeting CysLTRs in the treatment of eosinophilic disorders
    corecore