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Allergic bronchopulmonary aspergillosis (ABPA) is characterized by an early allergic

response and late-phase lung injury in response to repeated exposure to Aspergillus

antigens, as a consequence of persistent fungal colonization of the airways. Here,

we summarize the clinical and pathological features of ABPA, focusing on thick

mucus plugging, a key observation in ABPA. Recent findings have indicated that

luminal eosinophils undergo cytolytic extracellular trap cell death (ETosis) and release

filamentous chromatin fibers (extracellular traps, ETs) by direct interaction with Aspergillus

fumigatus. Production of ETs is considered to be an innate immune response

against non-phagocytable pathogens using a “trap and kill” mechanism, although

eosinophil ETs do not promote A. fumigatus damage or killing. Compared with

neutrophils, eosinophil ETs are composed of stable and condensed chromatin fibers

and thus might contribute to the higher viscosity of eosinophilic mucus. The major

fate of massively accumulated eosinophils in the airways is ETosis, which potentially

induces the release of toxic granule proteins and damage-associatedmolecular patterns,

epithelial damage, and further decreases mucus clearance. This new perspective on

ABPA as a luminal hypereosinophilic disease with ETosis/ETs could provide a better

understanding of airway mucus plugging and contribute to future therapeutic strategies

for this challenging disease.

Keywords: eosinophil, extracellular traps, extracellular trap cell death, allergic bronchopulmonary aspergillosis,

inflammation, mucus plugs, ETosis, NETosis

INTRODUCTION

Allergic bronchopulmonary aspergillosis (ABPA) is a disease entity first proposed by Hinson and
colleagues as bronchopulmonary aspergillosis in 1952 (1). ABPA develops mainly in adolescent
and adult patients with asthma or cystic fibrosis. It has been estimated that 2.5% (0.7–3.5%)
of adult patients with asthma suffer from ABPA (2). Clinically, it is characterized by peripheral
blood eosinophilia, increased levels of serum IgE, an immediate skin reaction and/or specific
IgE/IgG antibodies to Aspergillus fumigatus due to type I and III hypersensitivity reactions, and
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radiographic findings including pulmonary opacities, central
bronchiectasis, and mucus plugs (3–5). Systemic corticosteroids
and/or anti-fungal drugs are effective, although approximately
half of ABPA patients experience relapse (6, 7).

Besides blood eosinophilia, a massive accumulation of
eosinophils and clustering of these immune cells in the bronchial
lumen, resulting in bronchial impaction, are hallmarks of ABPA.
Clinically, this has been defined by different terms depending
on the context, such as “allergic mucin,” “high attenuation
mucus,” or “allergic mucus plugs.” Considerable evidence has
indicated the close association between the sputum eosinophil
count and/or the eosinophil granule protein concentration and
asthma severity (8, 9), althoughmuch less attention has been paid
to luminal eosinophils (and their lytic components) in ABPA.
This may be simply because of the lack of an explicit relationship
and/or the difficulties in measuring protein concentrations due
to the inspissated bronchial secretions. In this review, we discuss
the clinical features of ABPA, focusing on new insights into the
fate of eosinophils and their “cell debris” in the airways.

FUNGUS IN THE AIRWAYS

Germination and saprophytic growth of fungi in the mucus are
interesting and unique features of ABPA. Aspergillus fumigatus
is the major causative fungus of ABPA, but other Aspergillus
spp., such as A. flavus, A. niger, and A. oryzae, can also cause
ABPA, although less frequently. Schizophyllum commune, a
filamentous basidiomycete commonly found on the rotten wood
of trees, can cause similar pathology and a condition known as
allergic bronchopulmonary mycosis (ABPM) (7, 10–12). Because
fungal hyphae are immunologically active expressing and
releasing various proteases and pathogen-associated molecular
patterns (13–15), repeated exposures to airborne fragments of
fungal hyphae, either dead or alive, can cause asthma and
hypersensitivity pneumonitis. For the development of ABPM,
by contrast, inhalation of viable fungi as conidia, not their
hyphae fragments, and their germination in the lower airways
is essential. A. fumigatus has advantages for the development
of ABPA/ABPM over other fungi because of the small size of
its conidia (3–6µm) and thermophilicity (16). The conidia of
S. commune are also small (3–4µm), and prefer a relatively
high temperature (30–35◦C) to germinate (17). A. fumigatus
conidia are also known for their high dispersibility due to their
remarkable hydrophobicity (18).

Unlike fungal infections, germinated hyphae cannot penetrate
the lung tissues in the presence of a normal immune system
and bronchial structure. Therefore, A. fumigatus remains in
the mucus plugs of the bronchi. Compared with other fungi,
A. fumigatus has another advantage in this process in that it
induces the Muc5ac gene, one of the mucin genes, and mucus

Abbreviations: ABPA, allergic bronchopulmonary aspergillosis; ABPM,

allergic bronchopulmonary mycosis; AMwF, allergic mucus plugs with fungal

hyphae; BrCG-eo, bronchocentric granulomatosis with tissue eosinophilia; ET,

extracellular trap; EET, eosinophil extracellular trap; ETosis, extracellular trap cell

death; EETosis, eosinophil extracellular trap cell death; HAM, high attenuation

mucus; NET, neutrophil extracellular trap; NETosis, neutrophil extracellular trap

cell death; ROS, reactive oxygen species

production in bronchial epithelial cells (19). Induction ofMuc5ac
gene expression is dependent on the high serine protease activity
of A. fumigatus, which activates membrane-bound TNFα-
converting enzyme and TGF-α, stimulating epidermal growth
factor receptors. Compared with A. fumigatus, other fungi, such
as Penicillium and Alternaria, and other Aspergillus spp., such as
A. flavus and A. niger have lower serine protease activity (19, 20).

RADIOGRAPHIC FEATURES OF ABPA

In the first description of ABPA, Hinson and colleagues
advocated that the features of ABPA included (i) wheezing
and blood eosinophilia, (ii) repetitive infiltrations visible on
chest X-ray, and (iii) “allergic” (eosinophilic) mucus plugs with
fungal hyphae (AMwF) (1). In 1967, Scadding (21) reported the
presence of central bronchiectasis by bronchography, with the
initial mucus-filled bronchi being less apparent but bronchial
ectasis remaining. The diagnostic criteria for ABPA in the
pre-computerized tomography era, proposed by Rosenberg
and Patterson (22), included pulmonary opacities and central
bronchiectasis.

Currently, the radiographic features of ABPA include
bronchiectasis, mucoid impaction, pulmonary opacities, mosaic
attenuation, centrilobular nodules, tree-in-bud opacities, and
pleuropulmonary fibrosis (3). Pulmonary opacities, which are
usually transient, are frequently observed during the course
of the disease, with 89% of ABPA cases with bronchiectasis
demonstrating pulmonary opacities/ground grass attenuation in
a nationwide survey in Japan (7); however, this is not classed
as a specific feature of this disease. Central bronchiectasis with
peripheral tapering of bronchi has been considered as a relatively
specific finding for ABPA, but bronchiectasis can extend to the
peripheral bronchi in 33–63% of cases (23, 24). Mucus plugs
in the bronchi are common in ABPA, and may present as high
attenuation mucus (HAM) with a CT density higher than the
values of paraspinal skeletal muscle (25) or 70 Hounsfield units
(26). Magnetic resonance imaging of HAM showed hypodense
lesions in T1- and T2-weighed images, suggesting that the mucus
is desiccated or inspissated (27). HAM can be observed in more
than half of the cases with mucus plugs due to ABPA (7, 23),
and is more specific for this disease. The presence of HAM also
correlates with a higher number of eosinophils in the peripheral
blood and greater susceptibility to disease relapse (6, 28).

CLINICOPATHOLOGICAL FEATURES OF
ABPA

Regarding the pathological features of ABPA, Katzenstein and
colleagues emphasized the presence of AMwF, bronchocentric
granulomatosis with tissue eosinophilia (BrCG-eo), eosinophilic
bronchiolitis, and eosinophilic pneumonia (29). In 1988, Bosken
and coworkers indicated, based on the investigation of surgically
resected specimens, that mucoid impaction of bronchi with
allergic mucin or BrCG-eo, together with fungal hyphae detected
in the lesion, were sufficient for the diagnosis of ABPA/ABPM
(30). However, the diagnostic criteria proposed by Rosenberg and
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Patterson (22) excluded pathological findings; instead, clinical,
radiological, and laboratory findings, especially allergy tests, were
included.

AMwF was detected in the biopsy samples by bronchoscopy,
expectorated airway secretions, and the resected lungs. AMwF
has been described by pathologists as follows (31, 32). “AMwF
could be found in any bronchi of any lobes, including lobar and
segmental bronchi and 3rd−5th bifurcated small bronchi. AMwF
was typically white-yellowish, dark-yellowish, or yellow-greenish in
color, and sticky with elastic soft or elastic hard in consistency. The
shape ranged from branching and clubbing to lumpy. The H&E
stained section of the AMwF demonstrated concentric multiple
layers consisting of eosinophils, Charcot-Leyden crystals, and
fibrin (32, 33). The eosinophils might be viable, necrobiotic (with
pyknotic nuclei and nuclear dusts) or necrotic. The latter two
types formed inspissated eosinophil aggregates with indistinct cell
margins and occasionally exhibited many fissures likely due to
dehydration inside of AMwF, demonstrating ‘fir-tree structure’
(33). Fungi were usually found in the clusters of eosinophils as
fragmented hyphae or branching septate hyphae, and occasionally
in the mucus surrounding the eosinophil clusters. While fungi
floats in the air as unicellular spores, they reside in the AMwF as
multicellular hyphae, suggesting the proliferation of fungi.”

Central bronchiectasis and peripheral lung lesions in ABPM
were suggested as secondary pathological changes after the
formation of AMwF. BrCG-eo, eosinophilic bronchiolitis, and
eosinophilic pneumonia were found to be in the airways
peripheral to the AMwF plugs, previously described as follows
(32). “The investigation of the resected lungs of ABPM patients
revealed the airway walls plugged by AMwF were invaded with
eosinophils and small round cells including plasma cells and were
ulcerated, resulting in eosinophilic infiltration into the allergic
mucin. The intense inflammation in the bronchial walls destructed
and dissipated airway structures i.e., elastic fibers and smooth
muscles, and even bronchial cartilages. Central bronchiectasis
could be caused by the vulnerability of diseased bronchial walls
and by expanding AMwF. In the exudate from BrCG-eo and
eosinophilic bronchiolitis, inspissated eosinophil aggregates, fir-tree
structures and fungi were detected, similar to the AMwF. However,
the inspissated eosinophil aggregates and fir-tree structures were
fragmented and the number of fungi was smaller than that in the
central lesions of AMwF (30–33). These findings suggested that the
peripheral lung lesions might be formed by the bronchogenic spread
of AMwF to the peripheral lung.” Thus, careful morphological
analysis has indicated the AMwF is an initial and crucial step in
the development of ABPA.

EOSINOPHIL EXTRACELLULAR TRAP
CELL DEATH (ETOSIS) AND
EXTRACELLULAR TRAPS

Eosinophils are bone marrow-derived, short-lived, non-dividing
granulocytes that have been implicated as integral components of
allergic airway inflammation. Eosinophils contain∼200 granules
per cell (34), which are preformed stores of the specific granule
proteins (35). The highly cationic granule proteins possess

cytotoxicity by disrupting the integrity of lipid bilayers, exerting
neurotoxic properties, RNase activities, and participating in the
generation of reactive oxidants and radical species (36, 37). Since
eosinophil degranulation does not occur in the circulation (38),
it is critical to understand the actual mode of degranulation and
cell fate in the airways. Our recent studies indicated eosinophil
cell-death mediated degranulation, i.e., eosinophil ETosis, which
might play an important role in the generation of mucus plugs
(39, 40).

In 2004, Brinkmman and colleagues provided the first
evidence that neutrophils release filamentous chromatin
structures, i.e., neutrophil extracellular traps (NETs) (41). A
subsequent study revealed that the novel cell death process
mediates the release of NETs and was designated NETosis (42).
NETosis has unique features that are different from apoptosis and
necrosis. Unlike apoptosis, nuclear DNA fragmentation is spared
during the process of NETosis. Histone citrullination induces
chromatin decondensation and granules are intracellularly
disrupted before plasma membrane disintegration, thereby NETs
are associated with various antimicrobial molecules (including
histones, elastase, myeloperoxidase, cathepsin, and lactoferrin).
Once NETs are released, they immobilize and potentially kill
pathogens (41, 43, 44). Based on this, roles for these structures
in preventing microbial spread and in creating an antimicrobial
environment have been postulated.

Since chromatin traps are cytolytically released by other
leukocytes, such as macrophages (45) and mast cells (46, 47),
“ETosis” has been proposed as a similar cell death pathway
(48). Extracellular trap (ET) formation is now considered to
be a common mechanism of the innate immune system in
vertebrates (49). A recent report showed that even invertebrate
cells are capable of ETosis, indicating an ancient and evolutionary
conserved mechanism (50). Eosinophil ETosis (EETosis) was
first reported as a mechanism of “cytolysis” (also called lytic
degranulation, necrosis, primary lysis, and eosinophil lysis)
that has been observed (but often overlooked) in eosinophilic
inflammatory diseases (35). This finding indicates that eosinophil
cytolysis does not represent a process of passive/accidental
necrosis, rather eosinophils are actively selecting their death
program at the inflammatory site. The process of EETosis is akin
to that of neutrophils but notably differs in that intact granules
are released extracellularly (35, 51–53).

It is well-established that the process of leukocyte activation
and ET release plays a role in health and disease, including innate
immunity, autoimmunity, metabolic disorders, malignancies,
and coagulation (44, 46, 54–57). Excess production of ETs
could be pathogenic (49); for instance, large amounts of NETs
contribute to the thickness of airway fluids from patients with
cystic fibrosis (58). Inhalation of recombinant human DNase
improved lung function in cystic fibrosis patients, indicating the
pathogenicity of NETs (58–60). Similar to NETs, EETs provide a
sticky scaffold for secretions, a fact confirmed by the decrease in
viscosity following disruption of EET polymers with DNase (61).
Recently, we have shown abundant EETs associated with clusters
of cell-free extracellular granules in the bronchial mucus plugs
of ABPA patients (39, 40). We also observed a drastic decrease
in EETs in the bronchoscopically-obtained secretions from an
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ABPA patient after corticosteroid treatment, which correlated
with clinical improvements (40).

It is noteworthy that NETs and EETs have different attributes
in terms of stability and structure. The protein content of
ETs plays an important role in its mechanical properties
(62). Compared with neutrophils, eosinophils contain far less
proteases, and thus eosinophil chromatin is spared from
endogenous protease digestion (61, 63). Neutrophil elastase
promotes the chromatin decondensation of NETs by proteolytic
processing of histones (64). In vitro, NETs deteriorated within
24 h, whereas EETs were stable for at least 7 days (61).
Electron microscopy showed that released NETs consisted of
5–10-nm smooth stretches (composed of stacked cylindrical
nucleosomes) and 25–50-nm globular domains (41, 65), although
EETs consisted mostly of chromatin fibers with diameters of 25–
35 nm in conjunction with larger fibers (35). In terms of innate
immune responses, staunch fibers might offer an advantage by
immobilizing and hampering the progression of large parasites
(66), and may also pathologically contribute to the highly viscous
nature of eosinophil-dominant airway secretions, as clinically
observed in ABPA, but also in other diseases, such as eosinophil
chronic rhinosinusitis (51, 61), eosinophilic otitis media (63, 67),
and severe asthma (40, 68).

There is evidence in vitro that human eosinophils rapidly
activate in response to various stimuli by releasing mitochondrial
DNA via a non-cytolytic mechanism (69, 70). The mitochondrial
DNA would be present in mucus plugs since EETosis
liberates total cellular contents through plasma membrane
disintegration. However, mitochondrial DNA, lacking the
histone and nucleosome structure, is only 16 kbp in size,
constituting <1% of total cellular DNA (e.g., genomic DNA
has 3.2 billion bp, which equates to 2m in length/cell)
(71). In addition, human eosinophils contain a small number
of mitochondria (∼30/cell) (72). Therefore, nuclear-derived
chromatin fibers are a major component contributing to viscosity
(35), as evidenced by positive staining of airway EETs with
specific antibodies against histones/citrullinated histones (39,
61).

A. FUMIGATUS INDUCED EOSINOPHIL
ETOSIS

The immunopathological mechanisms that underlie the
molecular interactions between A. fumigatus and eosinophils
are also of interest (see review (73)). Our in vitro studies have
shown that ETs are released by lytic human eosinophils in direct
response to A. fumigatus (39). When human eosinophils were
co-cultured with A. fumigatus, EETs were released in a time and
ratio (fungus: cell) dependent manner (39).

Unlike necrosis, ETosis is an active form of cell death
and is frequently accompanied by the production of reactive
oxygen species (ROS) (35, 41, 43, 52, 69, 70, 74–76); however,
we observed that human eosinophils release EETs in vitro in
response to A. fumigatus in a ROS-independent manner (39).
Regarding Aspergillus specifically, neutrophils are described to
respond to different morphotypes of this fungus by releasing

NETs in a ROS-dependent process (77–79). However, the ROS-
independent release of NETs was observed when stimulated by
bacteria (80), parasites (81), fungi (Candida and Paracoccidioides
brasiliensis conidia) (82, 83), and other stimuli (84–86). The
participation of ROS in the process of ETosis might be essentially
dependent on the stimuli, time point, or microorganisms
examined.

Mechanistically, A. fumigatus induced EETosis in vitro is a
process dependent on the Syk tyrosine kinase pathway (known to
mediate cell signaling via different classes of receptors involved
in fungus recognition) and adhesion molecule CD11b β-integrin
(which recognizes β-glucan, a molecular pattern commonly
found in the cell wall of fungi) (39). Consistent with these
findings, CD11b has been described to play an important role
in eosinophil interactions with the fungus Alternaria alternata
(87). Previous studies with eosinophils and A. alternata suggest a
critical role for the CD11b I domain in eosinophil activation and
degranulation, but not for the lectin domain, which recognizes
the β-glucan (87). In neutrophils, both the C-type lectin receptor
dectin-1 and the β-integrin CD11b/CD18 (CR3) have been
implicated in the recognition of β-glucans on the cell surface ofA.
fumigatus (79, 88, 89). However, we did not detect the expression
of dectin-1 protein in human blood eosinophils (39).

Airway eosinophils display enhanced responses to a variety
of ligands and become further activated to degranulate (90, 91).
Human eosinophils undergo ETosis in response to immobilized
IgG or IgA (used as in vitro defined models of immunoglobulin-
coated pathogens including parasites), calcium ionophore, IL-
5/GM-CSF with platelet activating factor, or phorbol myristate
acetate to liberate ETs (35, 68, 92). In addition to the direct
response to A. fumigatus, it is possible that locally produced
immunoglobulins, cytokines, and other mediators could activate
eosinophils to induce EETosis. Indeed, a recent study indicated
that IgG-type autoantibodies were present in the airways of
patients with severe eosinophilic asthma, potentially induced by
the release of EETs (68). It is also noteworthy that biological
molecules associated with the fungal cell wall, such as chitin
and β-glucan from Aspergillus species, induce eosinophilic Th2
inflammation in mouse lungs (93–95).

LUMINAL EOSINOPHILS AND ETOSIS
MATTER

EETs exhibited intimate contact with A. fumigatus conidia and
with cell-free extracellular granules, indicating that EETs provide
an adhesive surface for organelle andmicroorganism entrapment
(39). The highly hydrophobic surface of A. fumigatus might be
easily entrapped by EETs, since EETs ensnare microorganisms
mainly via hydrophobic interactions (39, 61). It has been reported
that NETs may efficiently kill microbial pathogens (96–99);
however, several fungi may resist the antimicrobial effect of NETs
(79, 83, 100, 101).

Interestingly, our study revealed that human EETs did not
promote the damage or killing of A. fumigatus (39). Eosinophils
exhibit killing activity against different pathogens both in vitro
and in experimental models (reviewed in (102)). In vitro, Yoon
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and colleagues demonstrated that human eosinophils release
their cytotoxic granule proteins in response to A. alternata and
kill the fungus in a contact-dependent manner (87). Mouse bone
marrow-derived eosinophils exhibited killing activity against
A. fumigatus in vitro, which did not require cell contact
(103). By contrast, using a Th2-dominant murine model of
chronic invasive aspergilosis, eosinophil-deficient mice showed
decreased morbidity and improved clearance of A. fumigatus
(94). Intriguingly, studies based on mouse experimental models
revealed that Th2-type immunity to chronic fungi exposition
is generally accompanied by detrimental allergic inflammation,
including tissue eosinophilia, goblet cell hyperplasia, and airway
remodeling, but no signs of hyphae or invasive fungal growth
were reported at any time after conidia challenge (104). Thus,
the development of an animalmodel showing fungal colonization
of the airways similar to that observed in ABPA pathology is
still lacking. It remains unclear whether these discrepancies are
due to the differences between mouse and human eosinophils
(105) and/or experimental settings. Nevertheless, A. fumigatus
resistance to EET killing activity might be an important feature of
ABPA pathogenesis, possibly explaining the previously suggested
“innate immunological defect” in this disease (3).

The rheological properties of mucus and the mucociliary
transport system function as a self-cleaning mechanism for the
respiratory tract (106). However, difficult-to-remove eosinophilic
airway secretions are associated with disease severity (107, 108).
As described above, the lower protease content and stable
chromatin traps of eosinophils contribute to airway mucus
viscosity. Most recently, Dunican and coworkers indicated that
oxidants generated by eosinophil granule protein oxidize cysteine
thiol groups to stiffen airway mucus (109).

We propose that EETosis contributes significantly to the
fate of luminal eosinophils and plays a critical role in the
pathogenesis of ABPA (Figure 1). Under Th2 conditions, blood
eosinophils actively accumulate in the airway tissue. Eosinophils
are usually eliminated by migration into the airway lumen
followed by mucociliary clearance (110). Unlike apoptosis that
produces fragmented DNA, luminal eosinophils undergo ETosis
by direct interaction with fungi and/or local stimuli to release
a sticky chromatin structure. EETs contribute to the increased
viscosity of mucus rather than the direct elimination of fungi.
Eosinophil cytolysis also releases intact granules and a wide range
of nuclear and cytosolic damage-associated molecular patterns
(92). Free granules may act as a reservoir of toxic granule
proteins and secretion-competent extracellular organelles (35,
111). Perpetuating epithelial damagemay inhibit the effectiveness
of ciliary beating, thereby decreasing mucus transport and also
resulting in the release of alamins and further eosinophilic
inflammation. Thus, EETosis might promote a perpetuating cycle
of thickening secretions (51). However, this new perspective
requires further evaluation.

CONCLUDING REMARKS

As reviewed by Persson and Uller (112), cytolysis has often
been overlooked by researchers, although several clinical studies

FIGURE 1 | Proposed perpetuating cycle of mucus plugging caused by

eosinophil ETosis (EETosis). In Th2-type airway inflammation, eosinophils are

the major effector cells. They are supplied from the blood and massively

accumulate in the bronchial lumen, where they are highly activated by fungi

and other stimulants. EETosis-mediated cytolysis releases their total cellular

contents including eosinophil extracellular traps (EETs), which contributes to

the higher viscosity of eosinophilic mucus. Persistent fungal colonization of the

airways and inhibition of “cytotoxic” mucus clearance further contributes to

tissue damage, resulting in bronchiectasis. DMAPs, damage-associated

molecular patterns.

illustrated that cytolysis accounted for a major proportion of
bronchial eosinophils in severe and lethal asthma (112). Because
apoptosis is a rare event among tissue-migrated eosinophils,
ETosis-mediated cytolysis and luminal entry are likely to be
the major fates of these cells. Indeed, Charcot–Leyden crystals,
often observed in mucus plugs, were generated in association
with the EETosis process (53). Considering the clinical features
of ABPA, it is conceivable that increased eosinophil turnover,
rather than prolonged lifespan, might be a major cause of luminal
eosinophilia. It should be recognized that EETosis-mediated
cytolysis and EETs are potentially important therapeutic targets
in ABPA, as well as in other eosinophilic inflammatory diseases.
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