4 research outputs found

    Decadal shift in foraging strategy of a migratory southern ocean predator

    Get PDF
    Rapid anthropogenic environmental change is expected to impact a host of ecological parameters in Southern Ocean ecosystems. Of critical concern are the consequences of these changes on the range of species that show fidelity to migratory destinations, as philopatry is hypothesized to help or hinder adaptation to climate change depending on the circumstances. Many baleen whales show philopatry to feeding grounds and are also capital breeders that meet migratory and reproductive costs through seasonal energy intake. Southern right whales (Eubalaena australis, SRWs) are capital breeders that have a strong relationship between reproductive output and foraging success. The population dynamics of South Africa's population of SRWs are characterized by two distinct periods: the 1990s, a period of high calving rates; and the late 2010s, a period associated with lowered calving rates. Here we use analyses of stable carbon (δ13C) and nitrogen (δ15N) isotope values from SRW biopsy samples (n = 122) collected during these two distinct periods to investigate foraging ecology of the South African population of SRWs over a time period coincident with the demographic shift. We show that South African SRWs underwent a dramatic northward shift, and diversification, in foraging strategy from 1990s to 2010s. Bayesian mixing model results suggest that during the 1990s, South African SRWs foraged on prey isotopically similar to South Georgia/Islas Georgias del Sur krill. In contrast, in the 2010s, South African SRWs foraged on prey isotopically consistent with the waters of the Subtropical Convergence, Polar Front and Marion Island. We hypothesize that this shift represents a response to changes in preferred habitat or prey, for example, the decrease in abundance and southward range contraction of Antarctic krill. By linking reproductive decline to changing foraging strategies for the first time in SRWs, we show that altering foraging strategies may not be sufficient to adapt to a changing ocean

    Population changes in a whale breeding ground revealed by citizen science noninvasive genetics

    Get PDF
    Historical exploitation, and a combination of current anthropogenic impacts, such as climate change and habitat degradation, impact the population dynamics of marine mammalian megafauna. Right whales (Eubalaena spp.) are large cetaceans recovering from hunting, whose reproductive and population growth rate appear to be impacted by climate change. We apply noninvasive genetic methods to monitor southern right whale (E. australis, SRW) and test the application of noninvasive genetics to minimise the observer effects on the population. Our aim is to describe population structure, and interdecadal and interannual changes to assess species status in the Great Acceleration period of Anthropocene. As a basis for population genetic analyses, we collected samples from sloughed skin during post-migration epidermal moult. Considering the exploration-exploitation dilemma, we collaborated with whale watching companies, as part of a citizen science approach and to reduce ad hoc logistic operations and biopsy equipment. We used mitochondrial and microsatellite data and population genetic tools. We report for the first time the genetic composition and differentiation of the Namibian portion of the range. Population genetic parameters suggest that South Africa hosts the largest population. This corresponds with higher estimates of current gene flow from Africa compared to older samples. We have observed considerable interannual variation in population density at the breeding ground and an interdecadal shift in genetic variability, evidenced by an increase in the point estimate inbreeding. Clustering analyses confirmed differentiation between the Atlantic and Indo-Pacific, presumably originating during the ice ages. We show that population monitoring of large whales, essential for their conservation management, is feasible using noninvasive sampling within non-scientific platforms. Observed patterns are concurrent to changes of movement ecology and decline in reproductive success of the South African population, probably reflecting a large-scale restructuring of pelagic marine food webs.Charles University Grant Agency, Czech Republic.https://www.elsevier.com/locate/geccoam2023Mammal Research InstituteZoology and Entomolog

    Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground

    Get PDF
    As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite=208/46), Brazil (nnew mtDNA/microsatellite=50/50), South Africa (nnew mtDNA/microsatellite=66/77, npub mtDNA/microsatellite=350/47), Chile-Peru (nnew mtDNA/microsatellite=1/1), the Indo-Pacific (npub mtDNA/microsatellite=769/126), and SG (npub mtDNA/microsatellite=8/0, nnew mtDNA/microsatellite=3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of one genetically identified individual between the South American grounds. The single sample from Chile-Peru had a mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic, and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru

    Long-term stability in the circumpolar foraging range of a Southern Ocean predator between the eras of whaling and rapid climate change

    Get PDF
    Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change
    corecore