10 research outputs found

    Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay.

    Get PDF
    Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins. 4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid. A panel of proteins (n = 44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve = 0.78) and the replication group (area under the curve = 0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization. The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition

    Inflammatory biomarkers in Alzheimer's disease plasma

    Get PDF
    Introduction: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a \u201cHoly Grail\u201d of AD research and intensively sought; however, there are no well-established plasma markers. Methods: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. Results: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APO\u3b54 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). Discussion: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation

    Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury

    Get PDF
    A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury

    Bifurcation analysis points towards the source of beta neuronal oscillations in Parkinson's disease

    No full text
    Parkinson disease is the second most common neurodegenerative disorder after Alzheimer, affecting 0.16% of the population in the USA 1. This disease is most common in the elderly, what makes it a prominent health problem in developed countries, where the elder population is expected to importantly increase in the future. The mechanism generating the disease is the death of dopaminergic neurons in the substantia nigra pars compacta (SNc), a small brain region from the brain stem. These neurons release the neurotransmitter dopamine to the basal ganglia, a large and complex brain structure implicated in motor control and reinforcement learning. Once SNc neurons have died, the basal ganglia starts showing prominent features of malfunction, and the characteristics symptoms of Parkinson's disease began to be observed in the patient (i.e. general difficulty or inability to execute motor movements and limb tremor, among others). Modern theory of Parkinson's disease focuses on the abnormal brain activity oscillations observed in the basal ganglia, which are consistently observed in parkinsonian patients and correlate with their symptoms. This paper develops a mathematical model of the basal ganglia, which reproduces the experimentally recorded neuronal activity of this brain structure in health and disease. Studying this model numerical and analytically, we draw conclusion on how and where these oscillations are generated within the brain. If the conclusions of this mathematical model are further confirmed experimentally, we think they pave the way towards controlling such oscillations pharmacologically or through electrode stimulation in the future. © 2011 IEEE

    Plasma Proteomic Biomarkers Relating to Alzheimer's Disease : A Meta-Analysis Based on Our Own Studies

    Get PDF
    Altres ajuts: Innovative Medicines Initiative Joint Undertaking (EMIF grant agreement no. 115372); Department of Health of the Basque Government (allocation 17.0.1.08.12.0000.2.454.01.41142.001.H); University of Antwerp Research Fund. European Comission. Seventh Framework Programme FP7/2007-2013 and European Comission. Fifth Framework Programme QLRT2001-2455Background and Objective: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts. The study aims to conduct a meta-analysis based on our own studies to systematically assess the diagnostic performance of our previously identified blood biomarkers. Methods: To do this, we included seven studies that our group has conducted during the last decade. These studies used either Luminex xMAP or ELISA to measure proteomic biomarkers. As proteins measured in these studies differed, we selected protein based on the criteria that it must be measured in at least four studies. We then examined biomarker performance using random-effect meta-analyses based on the mean difference between biomarker concentrations in AD and controls (CTL), AD and mild cognitive impairment (MCI), MCI, and CTL as well as MCI converted to dementia (MCIc) and non-converted (MCInc) individuals. Results: An overall of 2,879 subjects were retrieved for meta-analysis including 1,053 CTL, 895 MCI, 882 AD, and 49 frontotemporal dementia (FTD) patients. Six proteins were measured in at least four studies and were chosen for meta-analyses for AD diagnosis. Of them, three proteins had significant difference between AD and controls, among which alpha-2-macroglobulin (A2M) and ficolin-2 (FCN2) increased in AD while fibrinogen gamma chain (FGG) decreased in AD compared to CTL. Furthermore, FGG significantly increased in FTD compared to AD. None of the proteins passed the significance between AD and MCI, or MCI and CTL, or MCIc and MCInc, although complement component 4 (CC4) tended to increase in MCIc individuals compared to MCInc. Conclusions: The results suggest that A2M, FCN2, and FGG are promising biomarkers to discriminate AD patients from controls, which are worthy of further validation

    Plasma Proteomic Biomarkers Relating to Alzheimer's Disease: A Meta-Analysis Based on Our Own Studies.

    Get PDF
    Background and Objective: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts. The study aims to conduct a meta-analysis based on our own studies to systematically assess the diagnostic performance of our previously identified blood biomarkers. Methods: To do this, we included seven studies that our group has conducted during the last decade. These studies used either Luminex xMAP or ELISA to measure proteomic biomarkers. As proteins measured in these studies differed, we selected protein based on the criteria that it must be measured in at least four studies. We then examined biomarker performance using random-effect meta-analyses based on the mean difference between biomarker concentrations in AD and controls (CTL), AD and mild cognitive impairment (MCI), MCI, and CTL as well as MCI converted to dementia (MCIc) and non-converted (MCInc) individuals. Results: An overall of 2,879 subjects were retrieved for meta-analysis including 1,053 CTL, 895 MCI, 882 AD, and 49 frontotemporal dementia (FTD) patients. Six proteins were measured in at least four studies and were chosen for meta-analyses for AD diagnosis. Of them, three proteins had significant difference between AD and controls, among which alpha-2-macroglobulin (A2M) and ficolin-2 (FCN2) increased in AD while fibrinogen gamma chain (FGG) decreased in AD compared to CTL. Furthermore, FGG significantly increased in FTD compared to AD. None of the proteins passed the significance between AD and MCI, or MCI and CTL, or MCIc and MCInc, although complement component 4 (CC4) tended to increase in MCIc individuals compared to MCInc. Conclusions: The results suggest that A2M, FCN2, and FGG are promising biomarkers to discriminate AD patients from controls, which are worthy of further validation

    Interplay of the human exposome, metabolome and gut microbiome in dementia and major depression.

    No full text
    Background: The pathogenesis of dementia and depression is complex involving the interplay of genetic and environmental risk factors including diet, life-style and the gut microbiome. Dementia and depression co-occur and metabolomics studies may shed light on the interplay of the various risk factors. Methods: We have studied the metabolome of 118,466 individuals including 8462 cases with a history of major depression (MDD) and 1,364 patients who developed dementia during follow-up from the UK Biobank (UKB). The human metabolome was profiled using the Nightingale platform. Result: For both disorders, we find direct evidence that metabolites involved in the tricarboxylic acid (TCA) cycle are altered in patients, albeit that different metabolites emerge as the most significant drivers in the two disorders. Both dementia and MDD dementia patients show a marked change in the HDL/VLDL axis in blood, with similar changes in particular small and extra large HDL subfractions seen in patients with MDD and those who develop depression in the future. The two patients groups further show similar changes in fat metabolism as measured by omega 3, omega 6 and PUFA levels. When comparing metabolic profiles over environmental risk factors for MDD and dementia, we find that MDD clusters with dementia risk factors physical activity, history of previous smoking and social isolation. Integrating the metabolic profiles of major depression and the gut microbiome we find that the gut microbiome may be a key mediator in the relationship between various metabolites involved in the HDL subfractions associated to both MDD and dementia. Conclusion: Our study shows that energy and fat metabolism is disturbed in patients with MDD as well as patients who develop dementia in the future and that the interplay between the genome, exposome, gut microbiome, human metabolome may play role in the co-occurrence of major depression and dementia

    Discovery and validation of multimodal biomarker signatures relating to Alzheimer's disease pathology and progression

    No full text
    Background Biomarkers of Alzheimer’s disease (AD) pathology and progression have now been identified across various modalities. The aims of the two studies presented (ANM-MMB and EMIF-AD biomarker discovery) are to discover and replicate previously identified biomarkers of disease pathology and progression, and moreover to determine whether a multimodal biomarker signature may add value in comparison to a biomarker of a single modality. Methods The ANM-MMB cohort is comprised of 718 AD, MCI converters and non-converters, and control subjects selected from the AddNeuroMed, Alzheimer’s research trust and Dementia case register cohorts. Cognitive measures, serum and urine metabolomics, structural MRI, genomics, whole blood transcriptomics and plasma proteomics data was available. The EMIF-AD biomarker discovery cohort consists of 1221 AD, MCI and control subjects, selected from the EMIF catalogue. All subjects had existing amyloid measures (CSF Aβ or amyloid-PET), structural MRI and clinical data, and furthermore plasma proteomics (targeted and untargeted), CSF proteomics (targeted), metabolomics, genomics and epigenetics data were generated. For both studies univariate and multivariate statistics were utilised to identify candidate biomarkers of AD pathology (neurodegeneration and/or brain amyloid burden), rates of cognitive decline, and MCI progression to dementia. pQTL-eQTL-mQTL analyses, network/pathway analysis, and multimodal classifiers were employed to detect multimodal signatures. Results Initial analyses indicate that in the ANM-MMB study a serum and urine derived 15 metabolite classifier predicts MCI progression to AD with 72% accuracy, and the biological significance of the metabolites included in the biomarker panel was identified. Further analyses will examine whether a multimodal classifier is able to predict with even greater accuracy. We will then seek to replicate this in the EMIF-AD biomarker discovery study. Further analyses will also examine single and multimodal biomarker classifiers of other endophenotypes. Conclusions These two studies could be used to identify novel and replicate previously identified single modality biomarker findings. Furthermore the impact of combining the additional modalities with these findings will be discussed. Computational and technical challenges encountered and the bioinformatics pipeline devised in the multimodal analysis of the ANM-MMB cohort will be used to inform the analysis pipeline of the EMIF-AD biomarker discovery study as a replication

    Replication study of plasma proteins relating to Alzheimer's pathology.

    Get PDF
    This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis. Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively. Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis. Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis
    corecore