44 research outputs found

    High-Pressure Synthesis of β-Ir4B5 and Determination of the Compressibility of Various Iridium Borides

    Get PDF
    "A new iridium boride, beta-Ir4B5, was synthesized under high-pressure/high-temperature conditions of 10.5 GPa and 1500 degrees C in a multianvil press with a Walker-type module. The new modification beta-Ir4B5 crystallizes in a new structure type in the orthorhombic space group Pnma (no. 62) with the lattice parameters a = 10.772(2) angstrom, b = 2.844(1) angstrom, and c = 6.052(2) angstrom with R1 = 0.0286, wR2 = 0.0642 (all data), and Z = 2. The structure was determined by single-crystal X-ray and neutron powder diffraction on samples enriched in B-11. The compound is built up by an alternating stacking of boron and iridium layers with the sequence ABA'B'. Additionally, microcalorimetry, hardness, and compressibility measurements of the binary iridium borides alpha-Ir4B5, beta-Ir4B5, Ir5B4, hexagonal Ir4B3-x and orthorhombic Ir4B3-x were carried out and theoretical investigations based on density function theory (DFT) were employed to complement a comprehensive evaluation of structure-property relations. The incorporation of boron into the structures does not enhance the compressibility but leads to a significant reduction of the bulk moduli and elastic constants in comparison to elemental iridium.

    Coating of Quantum Dots strongly defines their effect on lysosomal health and autophagy

    Get PDF
    In the last decade the interest in autophagy got an incredible boost and the phenomenon quickly turned into an extensive research field. Interestingly, dysfunction of this cytoplasmic clearance system has been proposed to lie at the root of multiple diseases including cancer. We therefore consider it crucial from a toxicological point of view to investigate if nanomaterials that are developed for biomedical applications interfere with this cellular process. Here, we study the highly promising 'gradient alloyed' Quantum Dots (QDs) that differ from conventional ones by their gradient core composition which allows for better fluorescent properties. We carefully examined the toxicity of two identical gradient alloyed QDs, differing only in their surface coatings, namely 3-mercaptopropionic (MPA) acid and polyethylene glycol (PEG). Next to more conventional toxicological endpoints like cytotoxicity and oxidative stress, we examined the influence of these QDs on the autophagy pathway. Our study shows that the cellular effects induced by QDs on HeLa cells were strongly dictated by the surface coat of the otherwise identical particles. MPA-coated QDs proved to be highly biocompatible as a result of lysosomal activation and ROS reduction, two cellular responses that help the cell to cope with nanomaterial-induced stress. In contrast, PEGylated QDs were significantly more toxic due to increased ROS production and lysosomal impairment. This impairment next results in autophagy dysfunction which likely adds to their toxic effects. Taken together, our study shows that coating QDs with MPA is a better strategy than PEGylation for long term cell tracking with minimal cytotoxicity.status: publishe

    Abstract Portable Standard LISP for Cray X-MP Computers

    No full text
    Portable Standard LISP (PSL) is a portable implementation of the programmin

    Implementing and Optimizing Lisp for the Cray

    No full text

    Implementation of portable standard LISP for the SPARC processor

    No full text
    SIGLETIB: RO 9118(89-6) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore