1,617 research outputs found
Self-heterodyned detection of dressed state coherences in helium by noncollinear extreme ultraviolet wave mixing with attosecond pulses
Noncollinear wave-mixing spectroscopies with attosecond extreme ultraviolet (XUV) pulses provide unprecedented insight into electronic dynamics. In infrared and visible regimes, heterodyne detection techniques utilize a reference field to amplify wave-mixing signals while simultaneously allowing for phase-sensitive measurements. Here, we implement a self-heterodyned detection scheme in noncollinear wave-mixing measurements with a short attosecond XUV pulse train and two few-cycle near infrared (NIR) pulses. The initial spatiotemporally overlapped XUV and NIR pulses generate a coherence of both odd (1snp) and even (1sns and 1snd) parity states within gaseous helium. A variably delayed noncollinear NIR pulse generates angularly-dependent four-wave mixing signals that report on the evolution of this coherence. The diffuse angular structure of the XUV harmonics underlying these emission signals is used as a reference field for heterodyne detection, leading to cycle oscillations in the transient wave-mixing spectra. With this detection scheme, wave-mixing signals emitting from at least eight distinct light-induced, or dressed, states can be observed, in contrast to only one light induced state identified in a similar homodyne wave-mixing measurement. In conjunction with the self-heterodyned detection scheme, the noncollinear geometry permits the conclusive identification and angular separation of distinct wave-mixing pathways, reducing the complexity of transient spectra. These results demonstrate that the application of heterodyne detection schemes can provide signal amplification and phase-sensitivity, while maintaining the versatility and selectivity of noncollinear attosecond XUV wave-mixing spectroscopies. These techniques will be important tools in the study of ultrafast dynamics within complex chemical systems in the XUV regime
On Interferometric Duality in Multibeam Experiments
We critically analyze the problem of formulating duality between fringe
visibility and which-way information, in multibeam interference experiments. We
show that the traditional notion of visibility is incompatible with any
intuitive idea of complementarity, but for the two-beam case. We derive a
number of new inequalities, not present in the two-beam case, one of them
coinciding with a recently proposed multibeam generalization of the inequality
found by Greenberger and YaSin. We show, by an explicit procedure of
optimization in a three-beam case, that suggested generalizations of Englert's
inequality, do not convey, differently from the two-beam case, the idea of
complementarity, according to which an increase of visibility is at the cost of
a loss in path information, and viceversa.Comment: 26 pages, 1 figure, substantial changes in the text, new material has
been added in Section 3. Version to appear in J.Phys.
A two-qubit Bell inequality for which POVM measurements are relevant
A bipartite Bell inequality is derived which is maximally violated on the
two-qubit state space if measurements describable by positive operator valued
measure (POVM) elements are allowed rather than restricting the possible
measurements to projective ones. In particular, the presented Bell inequality
requires POVMs in order to be maximally violated by a maximally entangled
two-qubit state. This answers a question raised by N. Gisin.Comment: 7 pages, 1 figur
Kochen-Specker theorem for a single qubit using positive operator-valued measures
A proof of the Kochen-Specker theorem for a single two-level system is
presented. It employs five eight-element positive operator-valued measures and
a simple algebraic reasoning based on the geometry of the dodecahedron.Comment: REVTeX4, 4 pages, 2 figure
Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nano-droplets
The spectroscopy of free radicals and radical containing entrance-channel
complexes embedded in superfluid helium nano-droplets is reviewed. The
collection of dopants inside individual droplets in the beam represents a
micro-canonical ensemble, and as such each droplet may be considered an
isolated cryo-reactor. The unique properties of the droplets, namely their low
temperature (0.4 K) and fast cooling rates ( K s) provides
novel opportunities for the formation and high-resolution studies of molecular
complexes containing one or more free radicals. The production methods of
radicals are discussed in light of their applicability for embedding the
radicals in helium droplets. The spectroscopic studies performed to date on
molecular radicals and on entrance / exit-channel complexes of radicals with
stable molecules are detailed. The observed complexes provide new information
on the potential energy surfaces of several fundamental chemical reactions and
on the intermolecular interactions present in open-shell systems. Prospects of
further experiments of radicals embedded in helium droplets are discussed,
especially the possibilities to prepare and study high-energy structures and
their controlled manipulation, as well as the possibility of fundamental
physics experiments.Comment: 25 pages, 12 figures, 4 tables (RevTeX
Electron affinity of Li: A state-selective measurement
We have investigated the threshold of photodetachment of Li^- leading to the
formation of the residual Li atom in the state. The excited residual
atom was selectively photoionized via an intermediate Rydberg state and the
resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled
both high resolution and sensitivity to be attained. We have demonstrated the
potential of this state selective photodetachment spectroscopic method by
improving the accuracy of Li electron affinity measurements an order of
magnitude. From a fit to the Wigner law in the threshold region, we obtained a
Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
Realizations of Causal Manifolds by Quantum Fields
Quantum mechanical operators and quantum fields are interpreted as
realizations of timespace manifolds. Such causal manifolds are parametrized by
the classes of the positive unitary operations in all complex operations, i.e.
by the homogenous spaces \D(n)=\GL(\C^n_\R)/\U(n) with for mechanics
and for relativistic fields. The rank gives the number of both the
discrete and continuous invariants used in the harmonic analysis, i.e. two
characteristic masses in the relativistic case. 'Canonical' field theories with
the familiar divergencies are inappropriate realizations of the real
4-dimensional causal manifold \D(2). Faithful timespace realizations do not
lead to divergencies. In general they are reducible, but nondecomposable - in
addition to representations with eigenvectors (states, particle) they
incorporate principal vectors without a particle (eigenvector) basis as
exemplified by the Coulomb field.Comment: 36 pages, latex, macros include
Photodissociation dynamics of the iodide-uracil (I-U) complex
Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I− ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I− and weak [U- H]− ion signal upon photoexcitation. The action spectra show two bands for I− and [U- H]− production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I− production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I− exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I−U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π∗ excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I− production suggest that this channel results from internal conversion to the I− ⋅ U ground state followed by evaporation of I−. This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations
Attosecond Time-Domain Measurement of Core-Level-Exciton Decay in Magnesium Oxide.
Excitation of ionic solids with extreme ultraviolet pulses creates localized core-level excitons, which in some cases couple strongly to the lattice. Here, core-level-exciton states of magnesium oxide are studied in the time domain at the Mg L_{2,3} edge with attosecond transient reflectivity spectroscopy. Attosecond pulses trigger the excitation of these short-lived quasiparticles, whose decay is perturbed by time-delayed near-infrared pulses. Combined with a few-state theoretical model, this reveals that the infrared pulse shifts the energy of bright (dipole-allowed) core-level-exciton states as well as induces features arising from dark core-level excitons. We report coherence lifetimes for the two lowest core-level excitons of 2.3±0.2 and 1.6±0.5 fs and show that these are primarily a consequence of strong exciton-phonon coupling, disclosing the drastic influence of structural effects in this ultrafast relaxation process
The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating
Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed
- …
