198 research outputs found
Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla
Background: Pancreatic cancer, including cancer of the ampulla of Vater and bile duct, is very aggressive and has a
poor five year survival rate; improved methods of patient stratification are required.
Methods: We assessed the expression of calpain-1, calpain-2 and calpastatin in two patient cohorts using
immunohistochemistry on tissue microarrays. The first cohort was composed of 68 pancreatic adenocarcinomas
and the second cohort was composed of 120 cancers of the bile duct and ampulla.
Results: In bile duct and ampullary carcinomas an association was observed between cytoplasmic calpastatin
expression and patient age (P = 0.036), and between nuclear calpastatin expression and increased tumour stage
(P = 0.026) and the presence of vascular invasion (P = 0.043). In pancreatic cancer, high calpain-2 expression was
significantly associated with improved overall survival (P = 0.036), which remained significant in multivariate
Cox-regression analysis (hazard ratio = 0.342; 95% confidence interva l = 0.157-0.741; P = 0.007). In cancers of the
bile duct and ampulla, low cytoplasmic expression of calpastatin was significantly associated with poor overall
survival (P = 0.012), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.595; 95%
confidence interval = 0.365-0.968; P = 0.037).
Conclusion: The results suggest that calpain-2 and calpastatin expression is important in pancreatic cancers,
influencing disease progression. The findings of this study warrant a larger follow-up study.
Keywords: Calpain, Calpastatin, Pancreas, Ampulla, Bile duct, Cance
2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces
The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research
Out-of-hospital cardiac arrest: determinant factors for immediate survival after cardiopulmonary resuscitation
OBJECTIVE: to analyze determinant factors for the immediate survival of persons who receive cardiopulmonary resuscitation from the advanced support units of the Mobile Emergency Medical Services (SAMU) of Belo Horizonte.METHOD: this is a retrospective, epidemiological study which analyzed 1,165 assistance forms, from the period 2008 - 2010. The collected data followed the Utstein style, being submitted to descriptive and analytical statistics with tests with levels of significance of 5%.RESULTS: the majority were male, the median age was 64 years, and the ambulance response time, nine minutes. Immediate survival was observed in 239 persons. An association was ascertained of this outcome with "cardiac arrest witnessed by persons trained in basic life support" (OR=3.49; p<0.05; CI 95%), "cardiac arrest witnessed by Mobile Emergency Medical Services teams" (OR=2.99; p<0.05; CI95%), "only the carry out of basic life support" (OR=0.142; p<0.05; CI95%), and "initial cardiac rhythm of asystole" (OR=0.33; p<0.05; CI 95%).CONCLUSION: early access to cardiopulmonary resuscitation was related to a favorable outcome, and the non-undertaking of advanced support, and asystole, were associated with worse outcomes. Basic and advanced life support techniques can alter survival in the event of cardiac arrest
Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12
Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress
An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma
Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55–60%) and calcium-dependent (40–45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event
Expansion of Cord Blood CD34+ Cells in Presence of zVADfmk and zLLYfmk Improved Their In Vitro Functionality and In Vivo Engraftment in NOD/SCID Mouse
BACKGROUND: Cord blood (CB) is a promising source for hematopoietic stem cell transplantations. The limitation of cell dose associated with this source has prompted the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). However, the expansion procedure is known to exhaust the stem cell pool causing cellular defects that promote apoptosis and disrupt homing to the bone marrow. The role of apoptotic machinery in the regulation of stem cell compartment has been speculated in mouse hematopoietic and embryonic systems. We have consistently observed an increase in apoptosis in the cord blood derived CD34(+) cells cultured with cytokines compared to their freshly isolated counterpart. The present study was undertaken to assess whether pharmacological inhibition of apoptosis could improve the outcome of expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB CD34(+) cells were expanded with cytokines in the presence or absence of cell permeable inhibitors of caspases and calpains; zVADfmk and zLLYfmk respectively. A novel role of apoptotic protease inhibitors was observed in increasing the CD34(+) cell content of the graft during ex vivo expansion. This was further reflected in improved in vitro functional aspects of the HSPCs; a higher clonogenicity and long term culture initiating potential. These cells sustained superior long term engraftment and an efficient regeneration of major lympho-myeloid lineages in the bone marrow of NOD/SCID mouse compared to the cells expanded with growth factors alone. CONCLUSION/SIGNIFICANCE: Our data show that, use of either zVADfmk or zLLYfmk in the culture medium improves expansion of CD34(+) cells. The strategy protects stem cell pool and committed progenitors, and improves their in vitro functionality and in vivo engraftment. This observation may complement the existing protocols used in the manipulation of hematopoietic cells for therapeutic purposes. These findings may have an impact in the CB transplant procedures involving a combined infusion of unmanipulated and expanded grafts
Honokiol Induces Calpain-Mediated Glucose-Regulated Protein-94 Cleavage and Apoptosis in Human Gastric Cancer Cells and Reduces Tumor Growth
Background. Honokiol, a small molecular weight natural product, has been shown to possess potent anti-neoplastic and anti-angiogenic properties. Its molecular mechanisms and the ability of anti-gastric cancer remain unknown. It has been shown that the anti-apoptotic function of the glucose-regulated proteins (GRPs) predicts that their induction in neoplastic cells can lead to cancer progression and drug resistance. We explored the effects of honokiol on the regulation of GRPs and apoptosis in human gastric cancer cells and tumor growth. Methodology and Principal Findings. Treatment of various human gastric cancer cells with honokiol led to the induction of GRP94 cleavage, but did not affect GRP78. Silencing of GRP94 by small interfering RNA (siRNA) could induce cell apoptosis. Treatment of cells with honokiol or chemotherapeutics agent etoposide enhanced the increase in apoptosis and GRP94 degradation. The calpain activity and calpain-II (m-calpain) protein (but not calpain-I (mu-calpain)) level could also be increased by honokiol. Honokiol-induced GRP94 down-regulation and apoptosis in gastric cancer cells could be reversed by siRNA targeting calpain-II and calpain inhibitors. Furthermore, the results of immunofluorescence staining and immunoprecipitation revealed a specific interaction of GRP94 with calpain-II in cells following honokiol treatment. We next observed that tumor GRP94 over-expression and tumor growth in BALB/c nude mice, which were inoculated with human gastric cancer cells MKN45, are markedly decreased by honokiol treatment. Conclusions and Significance. These results provide the first evidence that honokiol-induced calpain-II-mediated GRP94 cleavage causes human gastric cancer cell apoptosis. We further suggest that honokiol may be a possible therapeutic agent to improve clinical outcome of gastric cancer
- …