7,289 research outputs found
The multifocal pattern electroretinogram in chloroquine retinopathy
Purpose: Optimal screening for ocular toxicity caused by chloroquine and hydroxychloroquine is still controversial. With the multifocal pattern electroretinogram (mfPERG), a new electrophysiological technique has recently become available to detect early changes of ganglion cells. In this study this new technique is applied to a series of 10 patients seen consecutively receiving long-term chloroquine medication. Methods: In 10 patients receiving chloroquine medication, clinical examination, Amsler visual field testing and computerized color vision testing were performed. If toxicity was suspected, automated perimetry was carried out. In addition, in all patients conventional pattern electroretinogram (PERG) and mfPERG testing were performed. Results: On clinical examination 8 patients showed no chloroquine-associated maculopathy, while 2 patients did. Of these 2, only 1 reported abnormalities when viewing the Amsler chart, while automated perimetry showed typical, ring-like paracentral scotomas in both affected patients and color vision was significantly abnormal. In the normal patients, 4 of 8 had a mild color vision disturbance, which correlated to age-related macular changes. The amplitudes of the PERG and the central (approximately 10degrees) responses of the mfPERG were markedly reduced in chloroquine maculopathy, while the latencies were unchanged. The peripheral rings of mfPERG (ranging to 48degrees) were not affected by chloroquine toxicity. Both PERG and mfPERG were less affected by age-related macular changes. Conclusions: The reduction of PERG and central mfPERG responses in chloroquine maculopathy may help with the early detection of toxicity. Copyright (C) 2004 S. Karger AG, Basel
Two-channel conduction in YbPtBi
We investigated transport, magnetotransport, and broadband optical properties
of the half-Heusler compound YbPtBi. Hall measurements evidence two types of
charge carriers: highly mobile electrons with a temperature-dependent
concentration and low-mobile holes; their concentration stays almost constant
within the investigated temperature range from 2.5 to 300 K. The optical
spectra (10 meV - 2.7 eV) can be naturally decomposed into contributions from
intra- and interband absorption processes, the former manifesting themselves as
two Drude bands with very different scattering rates, corresponding to the
charges with different mobilities. These results of the optical measurements
allow us to separate the contributions from electrons and holes to the total
conductivity and to implement a two-channel-conduction model for description of
the magnetotransport data. In this approach, the electron and hole mobilities
are found to be around 50000 and 10 cm/Vs at the lowest temperatures (2.5
K), respectively.Comment: 6 page
Evaluating sociometer theory in children\u27s everyday lives. Inclusion, but not exclusion by peers at school is related to within-day change in self-esteem
Sociometer theory proposes that a person\u27s self-esteem is a permanent monitor of perceived social inclusion and exclusion in a given situation. Despite this within-person perspective, respective research in children\u27s everyday lives is lacking. In three intensive longitudinal studies, we examined whether children\u27s self-esteem was associated with social inclusion and exclusion by peers at school. Based on sociometer theory, we expected social inclusion to positively predict self-esteem and social exclusion to negatively predict self-esteem on within- and between-person levels. Children aged 9-12 years reported state self-esteem twice per day (morning and evening) and social inclusion and exclusion once per day for two (Study 1) and four weeks (Studies 2-3). Consistently across studies, we found that social inclusion positively predicted evening self-esteem on within- and between-person levels. By contrast, social exclusion was not associated with evening self-esteem on the within-person level. On the between-person level, social exclusion was negatively linked to evening self-esteem only in Study 1. Multilevel latent change score models revealed that children\u27s self-esteem changed from mornings (before school) to evenings (after school) depending on their perceived daily social inclusion, but not exclusion. The findings are discussed in light of sociometer theory and the bad-is-stronger-than-good phenomenon. (DIPF/Orig.
Skyrmion Lattice in a Chiral Magnet
Skyrmions represent topologically stable field configurations with
particle-like properties. We used neutron scattering to observe the spontaneous
formation of a two-dimensional lattice of skyrmion lines, a type of magnetic
vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice
stabilizes at the border between paramagnetism and long-range helimagnetic
order perpendicular to a small applied magnetic field regardless of the
direction of the magnetic field relative to the atomic lattice. Our study
experimentally establishes magnetic materials lacking inversion symmetry as an
arena for new forms of crystalline order composed of topologically stable spin
states
Automated claustrum segmentation in human brain MRI using deep learning
In the last two decades, neuroscience has produced intriguing evidence for a central role of the claustrum in mammalian forebrain structure and function. However, relatively few in vivo studies of the claustrum exist in humans. A reason for this may be the delicate and sheet-like structure of the claustrum lying between the insular cortex and the putamen, which makes it not amenable to conventional segmentation methods. Recently, Deep Learning (DL) based approaches have been successfully introduced for automated segmentation of complex, subcortical brain structures. In the following, we present a multi-view DL-based approach to segment the claustrum in T1-weighted MRI scans. We trained and evaluated the proposed method in 181 individuals, using bilateral manual claustrum annotations by an expert neuroradiologist as reference standard. Cross-validation experiments yielded median volumetric similarity, robust Hausdorff distance, and Dice score of 93.3%, 1.41 mm, and 71.8%, respectively, representing equal or superior segmentation performance compared to human intra-rater reliability. The leave-one-scanner-out evaluation showed good transferability of the algorithm to images from unseen scanners at slightly inferior performance. Furthermore, we found that DL-based claustrum segmentation benefits from multi-view information and requires a sample size of around 75 MRI scans in the training set. We conclude that the developed algorithm allows for robust automated claustrum segmentation and thus yields considerable potential for facilitating MRI-based research of the human claustrum. The software and models of our method are made publicly available
Age effect on retina and optic disc normal values
Purpose:
To investigate retinal thickness and optic disc parameters by the Retinal Thickness Analyzer (RTA) glaucoma program in older normal subjects and to determine any age effect.
Methods:
Subjects over 40 years of age without any prior history of eye diseases were recruited. Only subjects completely normal on clinical ophthalmologic examination and on visual field testing by Humphrey Field Analyzer (HFA) using the SITA 24-2 program were included. A total of 74 eyes from 74 subjects with even age distribution over the decades were enrolled and underwent topographic measurements of the posterior pole and of the optic disc by RTA. The `glaucoma full' program in software version 4.11B was applied.
Results:
Mean patient age was 59.9 +/- 10.3 years with a range from 40 to 80 years. The only parameter intraocular pressure (IOP) correlated with was retinal posterior pole asymmetry (r=0.27, p=0.02). IOP itself increased significantly with age (r=0.341, p=0.003). Mean defect and pattern standard deviation of the HFA did not correlate with any of the retinal or optic disc measurements. Increasing age correlated significantly with some of the morphologic measurements of the RTA: decreasing perifoveal minimum thickness (r=-0.258, p=0.026), increased cup-to-disc area ratio (r=0.302, p=0.016) and increased cup area (r=0.338 p=0.007).
Conclusions:
An age effect exists for some of the retina and optic disc measurements obtained by the RTA. Copyright (C) 2005 S. Karger AG, Basel
Radial and latitudinal dependencies of discontinuities in the solar wind between 0.3 and 19 AU and ?80° and +10°
International audienceDirectional discontinuities (DD) from 5 missions at 7 different locations between 0.3 and 19 AU and ?80° and +10° in the 3D heliosphere are investigated during minimum solar activity. The data are surveyed using the identification criteria of Burlaga (1969) (B) and Tsurutani and Smith (1979) (TS). The rate of occurrence depends linearly on the solar wind velocity caused by the geometric effect of investigating a larger plasma volume if the solar wind velocity ?sw increases. The radial dependence is proportional to r?0.78 (TS criterion) and r?1.28 (B criterion), respectively. This dependence is not only due to an increasing miss rate with increasing distance. The DDs must be unstable or some other physical effect must exist. After normalization of the daily rates to 400 km/s and 1 AU, no dependence on heliographic latitude or on solar wind structures is observable. This means that the DDs are uniformly distributed on a spherical shell. Normalized 64 DD per day are identified with both criteria. But large variations of the daily rate still occur, indicating that other influences must exist. The ratio of the rates of rotational (RDs) and tangential discontinuities (TDs) depends on the solar wind structures. In high speed streams, relatively more RDs exist than in low speed streams. In the inner heliosphere (r r ? over the transition evolves to an increase of smaller ? with increasing distance from the sun. The evolution is yielded by the anisotropic RDs with small ?. The spatial thickness dkm in kilometers increases with distance. The thickness drg normalized to the proton gyro radius decreases by a factor of 50 between 0.3 and 19 AU, from 201.3 rg down to 4.3 rg. In the middle heliosphere, the orientation of the normals relative to the local magnetic field is essentially uniform except for the parallel direction where no DDs occur. This indicates that RDs propagating parallel to B play a special role. In addition, in only a few cases is [?] parallel to [B / ?], which is required by the MHD theory for RDs. The DDs have strongly enhanced values of proton gyro radius rg for ? ~ 90°. In contrast, in the inner heliosphere, only a small increase in rg with ? is observed
Topological Hall effect in the A-phase of MnSi
Recent small angle neutron scattering suggests, that the spin structure in
the A-phase of MnSi is a so-called triple- state, i.e., a superposition of
three helices under 120 degrees. Model calculations suggest that this structure
in fact is a lattice of so-called skyrmions, i.e., a lattice of topologically
stable knots in the spin structure. We report a distinct additional
contribution to the Hall effect in the temperature and magnetic field range of
the proposed skyrmion lattice, where such a contribution is neither seen nor
expected for a normal helical state. Our Hall effect measurements constitute a
direct observation of a topologically quantized Berry phase that identifies the
spin structure seen in neutron scattering as the proposed skyrmion lattice
Optical conductivity of the Weyl semimetal NbP
The optical properties of (001)-oriented NbP single crystals have been
studied in a wide spectral range from 6 meV to 3 eV from room temperature down
to 10 K. The itinerant carriers lead to a Drude-like contribution to the
optical response; we can further identify two pronounced phonon modes and
interband transitions starting already at rather low frequencies. By comparing
our experimental findings to the calculated interband optical conductivity, we
can assign the features observed in the measured conductivity to certain
interband transitions. In particular, we find that transitions between the
electronic bands spilt by spin-orbit coupling dominate the interband
conductivity of NbP below 100 meV. At low temperatures, the momentum-relaxing
scattering rate of the itinerant carriers in NbP is very small, leading to
macroscopic characteristic length scales of the momentum relaxation of
approximately 0.5 m.Comment: 7.5 page
Influence of the First Preparation Steps on the Properties of GaN Layers Grown on 6H-SIC by Mbe
AbstractThe Gan heteroepitaxy on 6H-SiC is affected by the bad morphology of the substrate surface. We performed a hydrogen etching at 1550°C on the 6H-SiC(0001) substrates to obtain atomically flat terraces. An improvement of the structural properties of GaN grown by MBE on such substrates after deposition of a LT-AIN buffer layer is observed. A value of less than 220 arcsec of the FWHM of the XRD rocking curve, showing a reduced screw dislocations density, is comparable with the best results reported until now for thick GaN samples. Photoluminescence showed a structured near band edge emission spectrum with evidence of the A, B and C free exciton recombinations
- …