404 research outputs found

    Repair of Sandwich Structure in Support of the Payload Adapter Fitting (PAF) Part II: Severe Damage Repair

    Get PDF
    As part of a program examining a Payload Adaptor Fitting (PAF) for NASAs Space Launch System (SLS), a repair study of impact damage and misdrilled holes in composite sandwich structure was undertaken.1 In that study, it was shown that small holes and barely visible impact damage (BVID) could be repaired and all the measured undamaged in-plane compression strength recovered without removing the damaged material using a simple patch repair. It was noted that for more severe damage, either larger patches or removal of damage (or both) may be necessary to regain all of the measured undamaged compression strength. This Technical Memorandum (TM) presents the results of an experimental investigation into repair of more severely damaged sandwich structure than what was studied in reference 1

    Case Study Hydrologic Effects of Size and Location of Fields Converted from Drained Pine Forest to Agricultural Cropland

    Get PDF
    Abstract: Hydrological effects of land-use change are of great concern to ecohydrologists and watershed managers, especially in the Atlantic coastal plain of the southeastern United States. The concern is attributable to rapid population growth and the resulting pressure to develop forested lands. Many researchers have studied these effects in various scales, with varying results. An extended watershed-scale forest hydrologic model, calibrated with 1996–2000 data, was used to evaluate long-term hydrologic effects of conversion to agriculture (corn–wheat–soybean cropland) of a 29.5-km2 intensively managed pine-forested watershed in Washington County in eastern North Carolina. Fifty years of weather data (1951–2000) from a nearby weather station were used for simulating hydrology to evaluate effects on outflows, evapotranspiration, and water table depth compared with the baseline scenario. Other simulation scenarios were created for each of five different percentages (10, 25, 50, 75, and 100%) of land-use conversion occurring at upstream and downstream locations in the pine-forest watershed. Simulations revealed that increased mean annual outflow was significant (α 0.05) only for 100 % conversion from forest (261 mm) to agricultural crop (326 mm), primarily attributed to a reduction in evapotranspiration. Although high flow rates>5 mm day−1 increased from 2.3 to 2.6 % (downstream) and 2.6 to 4.2 % (upstream) for 25 to 50 % conversion, the frequency was higher for the upstream location than the downstream. These results were attributed to a substantial decrease in soil hydraulic conductivity of one of the dominant soils in the upstream location, which is expected after land-use conversion to agriculture. As a result, predicted subsurface drainage decreased, and surface runoff increased as soil hydraulic conductivity decreased for the soil upstream. These results indicate tha

    Sandwich Structure Risk Reduction in Support of the Payload Adapter Fitting

    Get PDF
    Reducing risk for utilizing honeycomb sandwich structure for the Space Launch System payload adapter fitting includes determining what parameters need to be tested for damage tolerance to ensure a safe structure. Specimen size and boundary conditions are the most practical parameters to use in damage tolerance inspection. The effect of impact over core splices and foreign object debris between the facesheet and core is assessed. Effects of enhanced damage tolerance by applying an outer layer of carbon fiber woven cloth is examined. A simple repair technique for barely visible impact damage that restores all compression strength is presented

    Repair of Sandwich Structure in Support of the Payload Adapter Fitting

    Get PDF
    As part of a program examining a composite payload adaptor fitting (PAF) for NASAs Space Launch System (SLS), a repair study of impact damage and misdrilled holes was undertaken. At the beginning of this repair study, the PAF was baselined as a honeycomb sandwich structure with eight-ply quasi-isotropic, carbon-fiber-reinforced epoxy facesheets. Although the baseline configuration could change, the repair program presented herein is generic enough in nature such that it will apply to most sandwich configurations. The vast majority of loads experienced by this structure will be in-plane compression; thus, this repair study concentrates on the in-plane compression strength of representative sandwich structure specimens. The PAF is a truncated cone with a minimum diameter of about 170 inches at the top and a maximum diameter of about 335 inches at the bottom. While the launch vehicle hardware should be protected throughout its life on the ground, rogue events (or misdrilled holes) are still a possibility. This study is not meant to address large scale damage or damage to the part other than in the acreage (the uniform portion of the structure that does not consist of joints or other detailed areas), but address the most probable type of damages (small impacts and misdrilled holes) in the vast majority of the structure (the acreage)

    IGEC2: A 17-month search for gravitational wave bursts in 2005-2007

    Get PDF
    We present here the results of a 515 days long run of the IGEC2 observatory, consisting of the four resonant mass detectors ALLEGRO, AURIGA, EXPLORER and NAUTILUS. The reported results are related to the fourfold observation time from Nov. 6 2005 until Apr. 14 2007, when Allegro ceased its operation. This period overlapped with the first long term observations performed by the LIGO interferometric detectors. The IGEC observations aim at the identification of gravitational wave candidates with high confidence, keeping the false alarm rate at the level of 1 per century, and high duty cycle, namely 57% with all four sites and 94% with at least three sites in simultaneous observation. The network data analysis is based on time coincidence searches over at least three detectors: the four 3-fold searches and the 4-fold one are combined in a logical OR. We exchanged data with the usual blind procedure, by applying a unique confidential time offset to the events in each set of data. The accidental background was investigated by performing sets of 10^8 coincidence analyses per each detector configuration on off-source data, obtained by shifting the time series of each detector. The thresholds of the five searches were tuned so as to control the overall false alarm rate to 1/century. When the confidential time shifts was disclosed, no gravitational wave candidate was found in the on-source data. As an additional output of this search, we make available to other observatories the list of triple coincidence found below search thresholds, corresponding to a false alarm rate of 1/month.Comment: 10 pages, 8 figures Accepted for publication on Phys. Rev.

    Results of the IGEC-2 search for gravitational wave bursts during 2005

    Get PDF
    The network of resonant bar detectors of gravitational waves resumed coordinated observations within the International Gravitational Event Collaboration (IGEC-2). Four detectors are taking part in this collaboration: ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was the only gravitational wave observatory in operation. The network data analysis implemented is based on a time coincidence search among AURIGA, EXPLORER and NAUTILUS, keeping the data from ALLEGRO for follow-up studies. With respect to the previous IGEC 1997-2000 observations, the amplitude sensitivity of the detectors to bursts improved by a factor about 3 and the sensitivity bandwidths are wider, so that the data analysis was tuned considering a larger class of detectable waveforms. Thanks to the higher duty cycles of the single detectors, we decided to focus the analysis on three-fold observation, so to ensure the identification of any single candidate of gravitational waves (gw) with high statistical confidence. The achieved false detection rate is as low as 1 per century. No candidates were found.Comment: 10 pages, to be submitted to Phys. Rev.

    Mineralogy of the Lunar Crust in Spatial Context: First Results from the Moon Mineralogy Mapper (M3)

    Get PDF
    India's Chandrayaan-1 successfully launched October 22, 2008 and went into lunar orbit a few weeks later. Commissioning of instruments began in late November and was near complete by the end of the year. Initial data for NASA's Moon Mineralogy Mapper (M3) were acquired across the Orientale Basin and the science results are discussed here. M 3 image-cube data provide mineralogy of the surface in geologic context. A major new result is that the existence and distribution of massive amounts of anorthosite as a continuous stratigraphic crustal layer is now irrefutable

    Identification of a New Spinel-Rich Lunar Rock Type by the Moon Mineralogy Mapper (M (sup 3))

    Get PDF
    The canonical characterization of the lunar crust is based principally on available Apollo, Luna, and meteorite samples. The crust is described as an anorthosite-rich cumulate produced by the lunar magma ocean that has been infused with a mix of Mgsuite components. These have been mixed and redistributed during the late heavy bombardment and basin forming events. We report a new rock-type detected on the farside of the Moon by the Moon Mineralogy Mapper (M3) on Chandrayaan-1 that does not easily fit with current crustal evolution models. The rock-type is dominated by Mg-spinel with no detectible pyroxene or olivine present (<5%). It occurs along the western inner ring of Moscoviense Basin as one of several discrete areas that exhibit unusual compositions relative to their surroundings but without morphological evidence for separate processes leading to exposure

    Character and spatial distribution of OH/H<SUB>2</SUB>O on the surface of the moon seen by M<SUP>3</SUP> on Chandrayaan-1

    Get PDF
    The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration

    A New Lunar Globe as Seen by the Moon Mineralogy Mapper: Image Coverage Spectral Dimensionality and Statistical Anomalies

    Get PDF
    The Moon Mineralogy Mapper (M3), a NASA Discovery Mission of Opportunity, was launched October 22, 2008 from Shriharikota in India on board the Indian ISRO Chandrayaan- 1 spacecraft for a nominal two-year mission in a 100-km polar lunar orbit. M3 is a high-fidelity imaging spectrometer with 260 spectral bands in Target Mode and 85 spectral bands in a reduced-resolution Global Mode. Target Mode pixel sizes are nominally 70 meters and Global pixels (binned 2 by 2) are 140 meters, from the planned 100-km orbit. The mission was cut short, just before halfway, in August, 2009 when the spacecraft ceased operations. Despite the abbreviated mission and numerous technical and scientific challenges during the flight, M3 was able to cover more than 95% of the Moon in Global Mode. These data, presented and analyzed here as a global whole, are revolutionizing our understanding of the Moon. Already, numerous discoveries relating to volatiles and unexpected mineralogy have been published [1], [2], [3]. The rich spectral and spatial information content of the M3 data indicates that many more discoveries and an improved understanding of the mineralogy, geology, photometry, thermal regime and volatile status of our nearest neighbor are forthcoming from these data. Sadly, only minimal high-resolution Target Mode images were acquired, as these were to be the focus of the second half of the mission. This abstract gives the reader a global overview of all the M3 data that were collected and an introduction to their rich spectral character and complexity. We employ a Principal Components statistical method to assess the underlying dimensionality of the Moon as a whole, as seen by M3, and to identify numerous areas that are low-probability targets and thus of potential interest to selenologists
    • …
    corecore