72 research outputs found

    Relationship of surface changes to metal leaching from tungsten composite shot exposed to three different soil types

    Get PDF
    Physical changes that occur on the surface of fired shots due to firing and impact with soil may increase the dissolution of muniton metals. Increased metal dissolution could potentially increase metal transport and leaching, affecting metal concentrations in surface and groundwater. This research describes the relationship between the surface changes on fired tungsten–nickel–iron (94% W:2% Ni:4% Fe) composite shots and metals leaching from those shots. Tungsten composite shot was fired into, and aged in, three soil types (Silty Sand, Sandy Clay, and Silt) in mesoscale rainfall lysimeters to simulate live-fire conditions and subsequent interactions between the metals of the composite and soil. Leachate, runoff, and soil samples were collected from the lysimeters and analyzed for metal content. The shots were analyzed using scanning electron microscopy (SEM) to evaluate surface changes. SEM results indicated that a soil’s particle size distribution initially affected the amount of metal that was sheared from the surface of the fired W-composite shots. Shearing was greatest in soils with larger soil particles (sand and gravel); shearing was least in soils composed of small soil particles (fines). Increased metallic shearing from the shot’s surface was associated with increasedWdissolution, compared to controls, following a simulated 1 year soil aging

    Targeted Epigenetic Remodeling of the \u3cem\u3eCdk5\u3c/em\u3e Gene in Nucleus Accumbens Regulates Cocain- and Stress-Evoked Behavior

    Get PDF
    Recent studies have implicated epigenetic remodeling in brain reward regions following psychostimulant or stress exposure. It has only recently become possible to target a given type of epigenetic remodeling to a single gene of interest, and to probe the functional relevance of such regulation to neuropsychiatric disease. We sought to examine the role of histone modifications at the murine Cdk5 (cyclin-dependent kinase 5) locus, given growing evidence of Cdk5 expression in nucleus accumbens (NAc) influencing reward-related behaviors. Viral-mediated delivery of engineered zinc finger proteins (ZFP) targeted histone H3 lysine 9/14 acetylation (H3K9/14ac), a transcriptionally active mark, or histone H3 lysine 9 dimethylation (H3K9me2), which is associated with transcriptional repression, specifically to the Cdk5 locus in NAc in vivo. We gound that Cdk5-ZFP transcription factors are sufficient to bidirectionally regulate Cdk5 gene expression via enrichment of their respective histone modifications. We examined the behavioral consequences of this epigenetic remodeling and found that Cdk5-targeted H3K9/14ac increased cocaine-induced locomotor behavior, as well as resilience to social stress. Conversely, Cdk5-targeted H3K9me2 attenuated both cocaine-induced locomotor behavior and conditioned place preference, but had no effect on stress-induced social avoidance behavior. The current study provides evidence for the causal role of Cdk5 epigenetic remodeling in NAc in Cdk5 gene expression and in the control of reward and stress responses. Moreover, these data are especially compelling given that previous work demonstrated opposite behavioral phenotypes compared with those reported here upon Cdk5 overexpression or knockdown, demonstrating the importance of targeted epigenetic remodeling tools for studying more subtle molecular changes that contribute to neuropsychiatric disease

    Environmental Programming of Susceptibility and Resilience to Stress in Adulthood in Male Mice

    Get PDF
    Epidemiological evidence identifies early life adversity as a significant risk factor for the development of mood disorders. Much evidence points to the role of early life experience in susceptibility and, to a lesser extent, resilience, to stress in adulthood. While many models of these phenomena exist in the literature, results are often conflicting and a systematic comparison of multiple models is lacking. Here, we compare effects of nine manipulations spanning the early postnatal through peri-adolescent periods, both at baseline and following exposure to chronic social defeat stress in adulthood, in male mice. By applying rigorous criteria across three commonly used measures of depression- and anxiety-like behavior, we identify manipulations that increase susceptibility to subsequent stress in adulthood and other pro-resilient manipulations that mitigate the deleterious consequences of adult stress. Our findings point to the importance of timing of early life stress and provide the foundation for future studies to probe the neurobiological mechanisms of risk and resilience conferred by variation in the early life environment

    Histone arginine methylation in cocaine action in the nucleus accumbens

    Get PDF
    Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms - such as histone acetylation and methylation on Lys residues - have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motiv ation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction. Keywords: histone arginine (R) methylation; drug addiction; medium spiny neurons; ChIP-seq; Sr

    Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility

    Get PDF
    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery

    Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors

    Get PDF
    Chronic exposure to drugs of abuse or stress regulates transcription factors, chromatin-modifying enzymes and histone post-translational modifications in discrete brain regions. Given the promiscuity of the enzymes involved, it has not yet been possible to obtain direct causal evidence to implicate the regulation of transcription and consequent behavioral plasticity by chromatin remodeling that occurs at a single gene. We investigated the mechanism linking chromatin dynamics to neurobiological phenomena by applying engineered transcription factors to selectively modify chromatin at a specific mouse gene in vivo. We found that histone methylation or acetylation at the Fosb locus in nucleus accumbens, a brain reward region, was sufficient to control drug- and stress-evoked transcriptional and behavioral responses via interactions with the endogenous transcriptional machinery. This approach allowed us to relate the epigenetic landscape at a given gene directly to regulation of its expression and to its subsequent effects on reward behavior
    • …
    corecore