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Summary

Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of 

disease. Most previous research has focused on individual brain regions and genes contributing to 

depression. However, emerging evidence in humans and animal models suggests that dysregulated 
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circuit function and gene expression across multiple brain regions drive depressive phenotypes. 

Here we performed RNA-sequencing on 4 brain regions from control animals and those 

susceptible or resilient to chronic social defeat stress at multiple time points. We employed an 

integrative network biology approach to identify transcriptional networks and key driver genes that 

regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key 

drivers and their associated transcriptional networks that regulate depression susceptibility and 

confirmed their functional significance at the levels of gene transcription, synaptic regulation and 

behavior. Our study reveals novel transcriptional networks that control stress susceptibility and 

offers fundamentally new leads for antidepressant drug discovery.

Introduction

Depression is a complex and heterogeneous disorder and a major contributor to the global 

burden of disease, yet current therapeutics have serious limitations (Greenberg et al., 2015; 
Steel et al., 2014). Virtually all drugs used to treat depression target the same basic 

mechanisms identified serendipitously more than 60 years ago and these existing 

pharmacotherapies induce full remission in fewer than 50% of people (Block and Nemeroff, 

2014). Depression is thought to arise from a complex interaction of biological, 

psychological and social factors and, consequently, finding a single target that causes 

depression in all individuals is unlikely. Rather, depression may be better understood as a 

multi-gene syndrome, in which pathology arises from compounded small changes affecting 

many genes rather than large changes in a small subset of genes (Gaiteri et al., 2014). 

Genome-wide transcriptional profiling may shed new light on the molecular mechanisms of 

the illness and help identify transcriptional regulators that better account for the complexity 

of depression. This in turn will facilitate the development of truly novel antidepressant 

treatments that target defined transcriptional networks.

We aimed to gain novel insight into the molecular basis of depression by leveraging an 

unbiased, systems approach focused on transcriptional regulation. Weighted gene 

coexpression network analysis (WGCNA) (Zhang and Horvath, 2005) is one such approach 

that has been utilized successfully to provide new biological insight into gene networks 

involved in several CNS disorders, including autism (Parikshak et al., 2013), Alzheimer's 

disease (Miller et al., 2013; Zhang et al., 2013), schizophrenia (Maschietto et al., 2015) and 

alcoholism (Vanderlinden et al., 2013). Previous studies have utilized coexpression analyses 

in depressed human post-mortem tissue or mouse stress models to describe interesting 

network level changes in single brain regions, but the mechanistic role of such changes has 

not been examined (Chang et al., 2014; Gaiteri and Sibille, 2011; Malki et al., 2015; Malki 

et al., 2013).

Neuroimaging studies of depressed patients and related findings from animal models suggest 

that depression may be a circuit-level disorder in which several functionally inter-connected 

brain regions are affected (Bagot et al., 2015; Christoffel et al., 2015; Ressler and Mayberg, 

2007). Accordingly, while studies of individual brain regions have yielded important 

information, a more global interrogation of transcriptional profiles within the several brain 

regions that comprise this broader circuitry may offer a fundamentally better understanding 
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of the pathophysiology of the disorder. The nucleus accumbens (NAC) lies at the center of 

one such circuit implicated in depression (Epstein et al., 2006; Nestler and Carlezon, 2006; 
Schlaepfer et al., 2008). The NAC integrates information from diverse glutamatergic inputs 

from prefrontal cortex (PFC), amygdala (AMY) and ventral hippocampus (VHIP), among 

other regions (Goto and Grace, 2008). Structural, functional and transcriptional changes in 

each of these brain regions have been reported in both rodent depression models and 

depressed humans (Bagot et al., 2015; Chang et al., 2014; Covington et al., 2010; Ding et 

al., 2015; Guilloux et al., 2012; Jaworska et al., 2014; Kennedy et al., 2001; Mayberg et al., 

2000; Sequeira et al., 2009; Vialou et al., 2014). We recently identified pathway-specific 

functional alterations in this circuitry (Bagot et al., 2015) in a highly validated mouse model 

of depression, chronic social defeat stress (CSDS) (Berton et al., 2006; Krishnan et al., 

2007). Specifically, activity of VHIP projections to NAC mediated susceptibility to CSDS, 

while PFC and AMY projections to NAC mediated resilience; however, the molecular 

mechanisms of these changes are unknown.

To understand the transcriptional mechanisms of dysregulated circuit function in depression, 

we used CSDS and RNA-sequencing (RNA-seq) to generate transcriptional profiles in NAC, 

VHIP, PFC and AMY of control, susceptible and resilient mice at both early and late time-

points post-CSDS. Utilizing these transcriptional profiles, we identified networks of co-

regulated genes associated with susceptibility or resilience, Interestingly, some of the 

networks associated with susceptibility show opposite regulation in VHIP vs. PFC and we 

validate the ability of novel hub genes within these networks to drive functional 

abnormalities at molecular, synaptic and behavioral levels. Together these data provide 

important new insights into transcriptional mechanisms of stress susceptibility.

Results

Differential expression signatures of susceptibility and resilience to CSDS

To generate circuit-wide transcriptional profiles we used RNA-seq to analyze NAC, VHIP, 

PFC and AMY from control, susceptible and resilient mice at 3 time-points post-CSDS 

(Figure 1A). Previous work established that CSDS induces 2 phenotypes: mice that are 

susceptible to stress (~67%) and exhibit profound and enduring social avoidance, and those 

that are resilient to stress (~33%) and continue to show a preference for social interaction 

similar to control mice (Krishnan et al., 2007).

Profiling gene expression changes across brain region and time—Previous 

work has established that functional and transcriptional alterations associated with 

susceptibility vs. resilience to CSDS represent distinct processes, with resilience not simply 

being the absence of susceptibility (Dias et al., 2014; Friedman et al., 2014; Krishnan et al., 

2007; Wilkinson et al., 2009). Thus, we aimed to identify the transcriptional alterations 

induced by CSDS in each population relative to the same non-stressed control animals to 

independently characterize stress-induced transcriptional profiles in susceptible and resilient 

states. We first profiled patterns of differential gene expression (susceptible vs. control [S vs. 

C] and resilient vs. control [R vs. C]) in each brain region at early (48h), late (28d) and 

stress-primed (28d, 5 min acute aggression, followed by 55 min housed adjacent to 
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aggressor) time-points post-CSDS (Figure 1, Table S1). We selected the 48h and 28d time 

points to profile both the emergence and persistence of susceptible and resilient phenotypes 

as previous work has shown that the phenotypes emerge by 48h and are stable at 28 days 

post-CSDS (Krishnan et al., 2007). Broadly, at 48h, we identified more differentially 

expressed genes (DEGs; p<0.05, FC >1.3) in R vs. C than in S vs. C mice in all brain 

regions (Figure 1B). By contrast, at 28d, the largest changes were observed in S vs. C in 

AMY and in R vs. C in VHIP and PFC, with NAC exhibiting similar numbers of DEGs in 

the 2 conditions (Figure 1C).

Since enduring changes in brain function in depression can affect not only basal neural 

circuit function, but also how the same circuits respond to subsequent stressors (Admon et 

al., 2015; Hooley et al., 2009), we re-exposed a group of animals, 28d post-CSDS, to an 

acute defeat stress for 1h. Under this stress-primed condition, more DEGs were detected in S 

vs. C than in R vs. C in every brain region except PFC, where more DEGs were still detected 

in R vs. C (Figure 1D). Together, these results suggest that resilient animals show a greater 

initial response to stress, which may reflect active adaptation. Further, long after the stress, 

neural circuits in resilient animals may be less responsive to stress, with the important 

exception of PFC. The unique degree of gene regulation in the resilient PFC might indicate a 

homeostatic adaptation that serves to constrain excessive stress-induced activation in other 

brain regions (Buijs and Van Eden, 2000).

To further characterize the observed DEG patterns, we examined enrichment of cell-type 

associated genes and gene ontologies (GOs). Although patterns of cell-type enrichment 

varied across time, neuronal genes were enriched in all brain regions at each time point 

(Figure 1E). Early post-defeat (48h), DEGs were predominantly enriched for neuronal 

genes. Late post-defeat (28d), a diversity of cell-type associated genes was present, 

including neurons (Figure 1E). Furthermore, DEGs were enriched for several GOs including 

translation and biosynthetic processes, GPCR signaling, extracellular matrix, plasma 

membrane and protein metabolic processes (Figure S1). We also identified DEGs in each 

brain region regulated across time (28d vs. 48h) in control mice and observed that some of 

these age-related genes overlapped with DEGs regulated in susceptible or resilient mice at 

each time point (Table S2).

Regional comparisons of differential gene expression patterns after CSDS

Depression involves circuit-level functional alterations in multiple brain structures, which 

may be reflected in altered transcriptional synchrony (Chen et al., 2015; Gaiteri et al., 2010; 
Posner et al., 2013). To explore such transcriptional synchrony after CSDS, we compared 

differential gene expression patterns in susceptibility and resilience between pairs of brain 

regions 48h post-defeat, an early time point when such phenotypic alterations emerge. We 

used a rank rank hypergeometric overlap test (RRHO) to identify the patterns and 

significance of overlap between gene expression profiles (Figure 2) (Plaisier et al., 2010). In 

resilience (R vs. C), we identified a robust overlap between PFC and NAC (max –log10(p-

value)=752) in genes upregulated in both brain regions (Figure 2A). We also observed a 

weaker overlap in co-upregulated genes between PFC and VHIP (max –log10(p-

value)=320). In susceptibility (S vs. C), we identified weaker overlaps between PFC and 
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VHIP (max –log10(p-value)=432), as well as between PFC and NAC (max –log10(p-

value)=360), in genes upregulated in each pair of brain regions (Figure 2A). Further RRHO 

analysis confirmed significantly different strengths of the overlap between PFC and NAC 

(max-log10(p-value)=19) and between PFC and VHIP (max-log10(p-value)=3) in resilient 

vs. susceptible conditions (Figure S2).

We next performed GO analysis on genes coordinately upregulated in PFC and NAC of 

resilient mice (R vs. C) (Figure 2C). Such genes enriched for the GOs oxidative 

phosphorylation (p=6.32×10−13, 3.56x), ribosome (p=8.96×10−10, 3.86x) and structural 

molecule activity (p=5.76×10−6, 2.41x). Likewise, genes coordinately upregulated in PFC 

and VHIP of susceptible mice (S vs. C) (Figure 2D) enriched for the GOs synaptic 

transmission (p=1.3×10−4, 2.92x) and ribosome (p=8.4×10−3, 3.43x).

Together, these analyses identified increased synchrony of transcriptional regulation between 

PFC and NAC in resilience, and between PFC and VHIP in susceptibility. The findings 

suggest that increased similarity of transcriptional profiles in PFC and NAC may drive 

resilience, whereas increased similarity in PFC and VHIP may drive susceptibility.

Coexpression analysis identifies susceptible- and resilient-specific gene networks

Having identified the broad pattern of transcriptome-wide changes across brain regions we 

then sought to resolve specific gene coexpression networks that could be critical in 

determining susceptiblity or resilience to CSDS. Previous findings suggest that gene 

coexpression analysis is especially useful in identifying transcriptional alterations in multi-

gene diseases, where the phenotypic state emerges from the convergence of numerous small 

changes rather than from isolated single-gene effects (Gaiteri et al., 2014). We constructed 2 

independent gene coexpression networks integrating expression data across brain regions 

(PFC, NAC, AMY, VHIP) and time-points (early, late, stress-primed) separately for 

susceptible and resilient mice (Figure 3A) to identify clusters (modules) of coexpressed 

genes (Langfelder et al., 2008; Zhang and Horvath, 2005). The susceptible network 

consisted of 52 modules and the resilient network consisted of 30 modules, with each 

module assigned an arbitrary color name (Table S3). Note that the 2 networks are 

completely independent and, while module names are reused across networks, there is no 

implied similarity of gene members.

To begin to probe the biological relevance of the identified coexpression modules we 

examined enrichment of GO terms (Table S3). Many of the identified biological processes 

have previously been implicated in depression (Arloth et al., 2015; Chang et al., 2014; Ding 

et al., 2015; Fabbri and Serretti, 2015; Kang et al., 2012; Philip et al., 2010; Sequeira et al., 

2009; Tham et al., 2011; NPAS of PGI, 2015). GOs enriched in the susceptible network 

modules included microtubule cytoskeleton (Lightcyan; p=8.8×10−20 9.85x), extracellular 

matrix (Lightyellow; p=2.9×10−15, 6.36x), synaptic transmission (Yellow; p=4.8 × 10−14 

3.7x), cell-cell signaling (Midnightblue; p=9.0×10−9, 3.16x), transcriptional activation 

(Purple; p=1.1×10−6, 3.1x) and NF-κB signaling (Red; p=6.3×10−4, 7.13x). Those enriched 

in the resilience network modules included synaptic transmission (Brown; p=2.80×10−18, 

3.79x), ribosome (Blue; p=2.60×10−13, 7.15x), GABAA receptor activity (Cyan; 

p=3.0×10−9, 74.13x), extracellular matrix (Green; p=4.6×10−11, 4.6x), nerve ensheathement 
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(Yellow; p=2.4×10−6, 14.56x) and acetylcholine metabolism (Greenyellow; p=3.3×10−3, 

148.85x).

Greater coexpression differences in susceptibility vs. resilience—We next 

assessed the robustness of the coexpression modules identified in susceptible and resilient 

networks by determining whether their “connectivity”—the strength of coexpression—

differs from control conditions. This is based on the hypothesis that gene modules that show 

altered connectivity in susceptibility or resilience as compared to the control state are the 

most functionally relevant (Figure 3B, S3A-B). A gene module can show either increased or 

decreased connectivity. Loss of connectivity describes a group of genes whose expression is 

highly coordinated in control mice but becomes less coordinated in susceptible or resilient 

mice, whereas gain of connectivity describes a group of genes more coordinately regulated 

in susceptible or resilient mice than in control mice. Loss of connectivity suggests a 

disruption or weakening of a basal transcriptional network, whereas gain of connectivity 

suggests strengthening or even emergence of a novel transcriptional network. Within the 

susceptible network, 24 modules (46.2%) showed gain of connectivity and 6 (11.5%) 

showed loss of connectivity, with the remaining modules (22; 42.3%) showing no change in 

connectivity compared to control. In stark contrast, within the resilient network, only 2 

(6.7%) modules showed a gain of connectivity and 3 (10%) showed a loss of connectivity 

compared to control, with the majority (25; 83.3%) showing no differential connectivity 

(Table S3). This analysis indicates that susceptibility associates with much larger changes in 

network connectivity than resilience, which suggests that coexpression changes may be most 

relevant in susceptibility. We thus focused our subsequent analyses on susceptible modules 

with significant “module differential connectivity” or MDC. The robustness of the 

susceptible modules was further validated by additional statistical assessments (Table S4).

Probing susceptible-specific modules—To gain insight into the biology of the 

susceptible-specific modules, we identified the most interesting modules for further study. 

We first examined the enrichment of cell-type associated genes in susceptible modules and 

identified 9 enriched for cell-type signatures (Figure S3C). Neuronal genes were 

significantly enriched in 5 modules: Midnightblue (p=1.27×10−14, 4.80x), Salmon 

(p=2.67×10-9, 3.60x), Yellow (p=2.03 ×10−11, 2.83x), Cyan (p=0.002, 2 .48x) and Seashell 

(p=0.003, 3.78x). The Lightyellow module is enriched for oligodendrocyte (p=3.15×10−10, 

13.94x), microglial (p=5.75×10−11, 4.06x) and endothelial (p=4.04×10−23, 6.62x) genes. 

Endothelial genes are also enriched in Peru (p=1.74×10−5, 4.05x), Purple (p=7.8×10−4, 

2.47x), Chartreuse (p=0.004, 5.73x), Green (p=0.01, 1.75x) and Yellow2 (p=0.03, 7.55x), 

and Lightcyan enriched for astrocytic genes (p=5.50×10−14, 6.76x).

To further probe the biological significance of susceptible modules in the emergence of 

susceptibility, we examined the enrichment of S vs. C and R vs. C DEGs at the 48h time-

point. Of the 30 significantly differentially connected modules, 19 were also enriched for 

DEGs in at least 1 brain region (Figure 3C). The Midnightblue (MB) module was of 

particular interest as it was highly enriched for DEGs across brain regions in a way that was 

consistent with regional RRHO patterns (Figure 2) and with our previous functional findings 

(Bagot et al., 2015). Specifically, this module robustly enriched for upregulated DEGs in 
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PFC and NAC as well as downregulated DEGs in VHIP in R vs. C. MB also enriched for 

DEGs downregulated in AMY in both R vs. C and S vs. C, suggesting a lack of specificity 

within AMY that may relate to findings of elevated anxiety in both susceptible and resilient 

mice (Krishnan et al., 2007). One other module, Violet (V), was similarly enriched for DEGs 

upregulated in PFC and NAC and DEGs downregulated in VHIP in R vs. C. This region-

specific pattern of DEG enrichment within the MB and V modules, along with the earlier 

identified regional RRHO analysis (Figure 2A), suggests that opposing PFC-VHIP 

regulation might be particularly important for determining susceptibility vs. resilience. 

Indeed, several of the most co-upregulated genes in the RRHO analysis were also found 

within either the MB or V module (e.g., Cbln2, Dkkl1, Neurod2, Prss12, Sdk1, Stx1a), and 

the synaptic transmission GO term is common to MB and to genes co-upregulated in PFC 

and VHIP (Figure 2C,D; Table S3). These shared patterns of gene regulation also relate to 

our recent findings of opposing functional adaptations between VHIP and PFC projections 

to NAC after CSDS (Bagot et al., 2015). Together, these analyses suggested that the MB and 

V modules may be particularly important in governing the emergence of susceptibility vs. 

resilience to CSDS.

Resolving the network structure of key susceptible-specific modules

Both the MB and V susceptible-specific modules show a gain of connectivity in 

susceptibility, suggesting that genes in these modules become coordinated in susceptible 

mice in a unique architecture or to a degree that does not occur in control mice (Figure S3B; 

Table S3). Further analysis revealed that the MB and V modules also exhibit a significant 

gain of connectivity in susceptibility relative to resilience (Table S4). As well, MB and V are 

neighboring modules within the hierarchical clustering network dendrogram and topological 

overlap matrix and as such highly correlated (Figure 3A), indicating that they are closely 

related. MB, a module of 433 genes, is significantly enriched for neuronal genes and GOs 

including cell-cell signaling and synaptic transmission, whereas V, a much smaller module 

of 77 genes, is not significantly enriched for specific cell-types or GOs.

As a prelude to testing the biological relevance of these networks in vivo, we reconstructed 

the network structure of genes within each of these modules based solely on their 

coexpression based connectivity and identified so-called ‘hub genes’ and ‘susceptible-

specific hub genes’. Hub genes (or key drivers) are highly connected genes within a module 

that are predicted to control the expression of many other module members, although it is 

important to note that this prediction is derived from non-directed correlational analyses. 

Susceptible-specific hub genes are key drivers in susceptibility, but not under control 

conditions, and as such may be especially important in generating gene coexpression 

networks unique to susceptibility. Of the 60 hub genes in MB, 31 were susceptible-specific 

(Figure 4A), and of the 14 hub genes in V, 7 were susceptible-specific (Figure 4B; Table S5). 

We hypothesized that directed manipulation of susceptible-specific hub genes would 

regulate the expression of these key networks and subsequently direct the outcomes of 

CSDS towards susceptibility or resilience.
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Over-expression of the hub gene Dkkl1 regulates the MB network

We first sought to validate our network analysis in vivo by testing the prediction that 

regulation of a hub gene would preferentially induce expression its module genes as opposed 

to genes in other modules. We focused on the larger MB module and the susceptible-specific 

hub gene Dkkl1 in VHIP, as our analyses predicted a regulatory role for this gene in VHIP 

even though it was not differentially expressed in this brain region. Using HSV vectors to 

infect neurons (Heller et al., 2014), thus targeting our manipulation to the cell-type for 

which the MB module was enriched, we over-expressed Dkkl1 plus GFP or GFP alone in 

VHIP of adult mice. We then subjected the mice to accelerated social defeat (coinciding 

with timing of maximal HSV expression) and performed RNA-seq on the virally infected 

tissue from VHIP. Differential expression analysis identified 184 genes upregulated by 

Dkkl1 over-expression and 1099 genes downregulated compared to GFP alone (p<0.05, 

FC>1.3; Figure S5A). We reasoned that, if Dkkl1 is a highly connected hub gene in the MB 

module, Dkkl1 over-expression should induce other MB module genes. Indeed, the genes 

upregulated in VHIP by Dkkl1 over-expression are highly significantly enriched in the MB 

module (p=1.46×10−21, 9.42x; Figure 5B). Notably, many other hub genes were regulated by 

Dkkl1 (Figure 5B). In addition, the genes upregulated by Dkkl1 over-expression were 

enriched for neuronal genes (p=1.96×10-13, 3.72x; Figure S5B), as was also observed for the 

MB module (Figure S4). We observed less significant enrichment in only a limited number 

of other susceptible modules (Figure 5A): V (p=5.46×10−5, 10.91x), a module closely 

related to MB as noted earlier; Yellow (p=1.51×10−6, 3.13x), a large module (1075 genes) 

that is enriched for similar GO terms as MB and shows a similar gain of connectivity and 

similar DEG enrichment (opposing PFC and VHIP regulation); and Navy (p=4.27×10−4, 

7.85x), a smaller module (108 genes) that is enriched for the DEGs downregulated in VHIP 

of susceptible mice, suggesting its function may overlap with VHIP mechanisms of 

susceptibility. While the MB module was specifically enriched for DEGs upregulated by 

Dkkl1 over-expression, the DEGs downregulated by Dkkl1 overexpression were not 

enriched (data not shown). These observations provide critical validation of the hub gene 

status of Dkkl1 in regulating gene expression within the MB module in brain and thereby 

provide crucial in vivo support for our bioinformatic predictions.

Next, given that the manipulation of the MB module and Dkkl1 is predicted to induce 

behavioral susceptibility, we reasoned that it might reverse “resilient-like” transcriptional 

profiles in this brain region. As noted earlier, the MB module is enriched for the 

downregulated DEGs in R vs. C in VHIP. Thus, we asked whether the DEGs upregulated by 

Dkkl1 over-expression, which are enriched in the MB module and similarly enriched for 

neuronal genes, might overlap with the DEGs downregulated in R vs. C early post-defeat. 

Indeed, this enrichment was highly significant (p=1.5 × 10−8, 8.20x), indicating that over-

expression of this susceptible-specific hub gene in VHIP induces a pattern of gene 

expression opposing that associated with resilience.

Over-expression of susceptible-specific hub genes in VHIP induces susceptibility

Having confirmed the potential of our coexpression network analysis to identify key drivers 

of the susceptible network, we examined the functional significance of predicted hub genes 

within the MB and V modules in directing behavioral outcomes of defeat stress. We selected 
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2 susceptible-specific hub genes, Dkkl1 and Neurod2, from the larger MB network and 1, 

Sdk1, from V for over-expression. Note that, while MB and V modules contain genes 

previously implicated in depression (see Discussion), we explicitly focused on genes not 
previously implicated in depression to test the utility of our unbiased approach to identify 

novel targets. Moreover, we selected susceptible-specific hub genes that were identified even 

though they did not show consistent differential expression changes in the targeted regions, a 

fact that would have excluded them from conventional DEG analyses. The selected hub 

genes mediate diverse biological processes. Little is known about the function of Dkkl1 in 

brain except that it bears sequence similarity to Dkk1, an antagonist of canonical Wnt 

signaling, implicated broadly in neuronal development and survival (Oliva et al., 2013; 
Sibbe and Jarowyj, 2013). Neurod2 encodes a transcription factor that is important in 

neuronal differentiation and synapse maturation (Messmer et al., 2012; Olson et al., 2001; 
Wilke et al., 2012). Sdk1 is a cell-adhesion molecule that guides synapse formation in retina 

(Yamagata and Sanes, 2008; Yamagata et al., 2002), and recent work from our group has 

implicated Sdk1 in cocaine-induced spinogenesis in NAC (Scobie et al., 2014). Based on the 

pattern of DEGs with the MB and V modules (Figure 3C), we predicted that over-expressing 

the selected hub genes in VHIP vs. PFC would induce different effects on susceptibility to 

social defeat.

We over-expressed the gene of interest (Dkkl1, Neurod2 or Sdk1) plus GFP, or GFP alone, 

in either VHIP (Figure 6B) or PFC (Figure 6F), subjected mice to accelerated social defeat, 

and tested social interaction (Figure 6A). Mice in which Dkkl1 or Neurod2 (MB hub genes) 

was over-expressed in VHIP spent similar amounts of time investigating an empty 

interaction zone, but significantly less time interacting with a social target than HSV-GFP 

injected mice (F1,15=8.625, p=0.01, Bonferroni post-hoc p<0.01, n=9,8, Figure 6C; 

F1,14=5.087, p=0.04, Bonferroni post-hoc p<0.05,n=8,8, Figure 6D), indicating increased 

susceptibility to social defeat stress. In contrast, over-expression of Dkkl1 or Neurod2 in 

PFC did not alter the time mice spent investigating an empty interaction zone or interacting 

with a social target (F1,15=1.103, p=0.31, n=8,9; Figure 6G;F1,16=1.29, p=0.38, n=8,10; 

Figure 6H). Similar to manipulations of the MB hub genes, mice in which Sdk1 (a V hub 

gene) was over-expressed in VHIP also spent less time interacting with a social target 

(F1,16=4.959, p=0.04, Bonferroni post-hoc p<.05,n=9,9; Figure 6E), indicating increased 

stress susceptibility. Strikingly, over-expression of Sdk1 in PFC showed the opposite effect: 

mice spent more time interacting with a social target (F1,16=4.256, p=0.04, Bonferroni post-

hoc, p<.05, n=9,9; Figure 6I), indicating increased resilience.

We also examined whether over-expression of these susceptible-specific hub genes in VHIP 

or PFC altered other measures of depression- and anxiety-like behaviors (Figure S6). Mice 

in which Neurod2 was over-expressed in PFC (Figure S6H) spent less time immobile in a 

forced swim test (t=2.512, p<0.05), an antidepressant-like effect, whereas over-expression of 

Sdk1 in VHIP (Figure S6K) trended towards increased immobility (t=1.767, p=0.099). Mice 

in which Sdk1 was over-expressed in VHIP (Figure S6I) also spent less time exploring the 

center of an open field, indicating an anxiogenic-like effect (t=2.370, p<0.05).

Since Neurod2 exhibited increased expression in NAC in R vs. C, and upregulation of MB 

module genes in NAC is also predicted to increase resilience (Figure 3C), we examined the 
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effect of over-expressing Neurod2 in this brain region. Neurod2 over-expression 

significantly increased time interacting with a social target (F1,17=5.142, p=0.005, 

Bonferroni post-hoc p<.01, n=9,10, Figure S6N), supporting the prediction of increased 

resilience.

Finally, as a negative control for the predictive validity of our coexpression network analysis, 

we over-expressed 3 genes that are predicted to not regulate susceptibility in VHIP based on 

their assignment to the non-clustering Grey module (Agtr1b and Parg) or to the non-

differentially connected Grey60 module (Parp). Over-expression of each of these genes 

failed to alter behavior in the social interaction, open field or forced swim tests (Figure S6Q-

S; one-way ANOVA; GFP n=8, Agtr1b n=6, Parg n=7, Parp n=9).

MB and V hub genes increase sEPSC frequency in VHIP neurons

Having demonstrated that over-expression of susceptible-specific hub genes in VHIP 

induces a pro-susceptible phenotype, we next probed the cellular correlates of this increased 

susceptibility by examining the effects of over-expression prior to defeat. In a recent 

functional characterization of this circuitry, we found evidence of increased activity of VHIP 

neurons (projecting to NAC) in susceptible mice and optogenetically increasing activity of 

this pathway induced susceptibility (Bagot et al., 2015). Additionally, MB was significantly 

enriched for GOs cell-cell signaling and synaptic transmission. We thus reasoned that MB 

and V modules may be implicated in these synaptic alterations and that susceptible-specific 

hub genes may enhance VHIP excitability. We focused on Dkkl1, which robustly induced 

behavioral susceptibility in VHIP, and Sdk1, given its role in promoting spinogenesis in 

brain. Over-expression of either Dkkl1 or Sdk1 increased sEPSC frequency compared to 

cells infected with the control HSV-GFP vector, and importantly sEPSC frequency in GFP-

overexpressing cells did not differ from non-infected cells (F3, 57=9.185, p < 0.0001; HSV-

Dkkl1 vs. GFP p<0.0001; HSV-Sdk1 vs. GFP p<0.05, n cells/mice=10/5 non-infected, 23/5 

HSV-GFP, 17/4 HSV-Dkkl1, 10/5 HSV-Sdk1; Figure 7B,C). In contrast, neither Dkkl1 or 

Sdk1 altered sEPSC amplitude (F3,57=0.8978, p=0.448; Figure 7B,D). These data suggest 

that early regulation of susceptible-specific hub genes in the MB and V modules establishes 

susceptibility by increasing activity at VHIP synapses.

Discussion

We developed molecular network models to significantly extend the understanding of 

transcriptional mechanisms of depression by performing a coexpression network analysis of 

the whole transcriptome in 4 inter-connected brain regions implicated in depression, over 3 

time points after CSDS, in both susceptible and resilient populations (total 36 groups). Prior 

studies of transcriptional mechanisms of depression have focused primarily on identifying 

individual candidate genes, or profiling whole transcriptomes within single brain regions in 

isolation. Here we successfully leveraged a systems biology approach to reveal inter-

regional co-regulation gene signatures of susceptibility and resilience and to then identify 

novel transcriptional networks associated with susceptibility or resilience to chronic stress. 

While coexpression analyses have been previously applied to generate insight into other 

syndromes, our study is unique in systematically examining the multifaceted dysregulation 
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of gene networks within several inter-connected brain regions in depression and is the first 

study to demonstrate in vivo validation of key regulators of transcriptional networks. 

Critically, we demonstrate the utility and validity of this approach by directly manipulating 

predicted susceptibility-specific hub genes in vivo. We show that overexpressing one such 

hub gene in VHIP significantly increases the expression of other genes in its module 

selectively, and that over-expression of each of 3 hub genes induces predicted, region-

specific regulation of behavioral susceptibility. Importantly, over-expression of genes 

predicted to not regulate susceptibility had no effect. Finally, we reveal a synaptic 

mechanism through which hub gene manipulations alter circuit function to regulate 

responses to chronic stress. This study provides a powerful example of how a network 

approach can be applied to integrate large-scale transcriptomic data to reveal novel insight 

into transcriptional mechanisms of a pathological state such as depression and, in so doing, 

create a platform for future studies to pursue novel targets for drug development.

We adapted RRHO analysis to characterize inter-regional patterns of transcriptional 

regulation and identified an important similarity of transcriptional regulation between PFC 

and NAC in resilience and between PFC and VHIP in susceptibility. These patterns were 

also seen when examining the enrichment of DEGs within key susceptible coexpression 

modules. This, combined with knowledge of functional connectivity between VHIP and 

PFC, informed our decision to focus upon the MB and V modules to reveal novel insights 

into transcriptional mechanisms of susceptibility. We demonstrated that key hub genes from 

each module regulated sEPSC frequency in VHIP, demonstrating the role of these 

transcriptional networks in regulating synaptic transmission. Intersection of our modules 

with DEG lists suggested opposing regulation of the modules in VHIP and PFC. It is 

interesting to note opposing functional adaptations in these 2 brain regions have been 

described in the context of depression in humans and stress in animal models, with the PFC 

exerting a pro-resilience effect and the VHIP promoting susceptibility (Bagot et al., 2015; 
Covington et al., 2010; Jaworska et al., 2014; Mayberg et al., 2000; Vialou et al., 2014), and 

that functionally increasing synaptic transmission between PFC and NAC enhances stress 

resilience while reducing PFC and VHIP synchrony is associated with reversal of 

depression-like phenotypes (Insel et al., 2015). Thus, our circuit-level transcriptional 

analyses coincide with findings of functional studies, including those in human depression, 

and greatly extend these observations by identifying putative transcriptional networks 

underpinning the functional adaptations. It will be interesting in future studies to expand this 

analysis to several additional brain regions that are also implicated in depression.

Our coexpression network analysis led us to investigate novel targets that we demonstrate 

regulate region-specific effects on synaptic function and behavioral susceptibility. Sdk1 
showed a particularly striking phenotype: its overexpression in PFC vs. VHIP induced 

opposite behavioral effects, consistent with our derived predictions, and also increased 

synaptic transmission in VHIP, a potential cellular mechanism by which Sdk1 regulates 

increased susceptibility in this brain region (Bagot et al., 2015). The example of Sdk1 is 

especially compelling in its support of a systems biology approach as Sdk1 was not itself 

differentially expressed in any brain region studied, although we identified it as a 

susceptible-specific hub gene within a key coexpression module (V) that was enriched for 

other differentially expressed genes within VHIP and PFC. Thus, standard transcriptional 
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analyses would have failed to detect this important target. Likewise, we validated 2 other 

genes, heretofore not examined in depression, Dkkl1 and Neurod2, which we show control 

stress susceptibility when over-expressed in VHIP and, for Neurod2, in NAC as well. We 

propose that hub gene manipulations regulate behavioral susceptibility by driving the 

expression of other genes within that module. This hypothesis is supported by the observed 

enrichment of MB module genes among genes induced by Dkkl1 over-expression in VHIP. 

However, Dkkl1 over-expression also affected numerous other genes and we cannot exclude 

the possibility that such regulation may contribute to the observed behavioral effects. In any 

event, these findings indicate that the susceptibility network generated in this study likely 

identifies numerous other hub genes which are also important in controlling stress responses, 

and provide a mechanism by which transcriptional networks can be regulated to drive 

susceptibility vs. resilience after CSDS.

In addition to identifying novel targets, our analyses identified genes and biological 

functions previously implicated in depression. Analyzing transcriptional alterations in 

postmortem tissue from depressed humans is one source of mechanistic insight, although the 

limited availability of human tissue coupled with its inherent variability (treatment history, 

years since diagnosis, age, post-mortem indices) can complicate such efforts. Mouse models 

of psychiatric disorders are thus essential tools in furthering our understanding of 

transcriptional mechanisms in human disease by both facilitating identification of disease-

relevant transcriptional alterations and allowing the testing of causality of such changes 

through detailed in vivo validation in the same system. The present results attest to the utility 

of this approach. Our data sets are now a valuable resource with which to filter evolving 

transcriptional and genome sequence studies of depressed humans, which have not revealed 

significant depression risk genes in heterogeneous populations and ongoing transcriptomic 

studies. Indeed, we see overlap between MB genes and those identified as showing altered 

expression in depressed humans (e.g. ADRBK2, DNER, NCALD, NRXN2, PAK1, RGS7, 

SCAMP5, SYNGR1) and between MB and V genes and those in proximity to potential 

depression-associated single nucleotide polymorphisms (e.g. CACNA1G, CNIH3, DSCAM, 

ELAVL4, GFRA2, PAK1, PTK2, RPH3A, SULT4A1) (Chang et al., 2014; Ding et al., 2015; 
Sequeira et al., 2009). It is important to note that the current analyses focus on male mice. In 

light of documented sex-differences in depression incidence and clinical presentation future 

work should extend these analyses to females to determine the generalizability and 

specificity of transcriptional mechanisms of depression.

We observed clear differences between analyses of DEGs (Figure 1) and coexpression 

networks (Figure 3). At 48h post-defeat, more genes were differentially expressed in R vs. C 

than in S vs. C (Figure 1B). In contrast, in coexpression networks constructed across 

multiple time-points, greater changes in module connectivity were observed in S vs. C 

(Figure 3B). The 2 analyses capture different dimensions of the highly complex data set, 

with differential expression data reflecting changes in a single dimension—a gene—between 

groups. In contrast, differential connectivity implies a 2-dimensional phenomenon where 

correlations between pairs of genes have been altered. Although differential expression and 

differential connectivity can co-exist, they are essentially independent metrics. The finding 

of increased differential connectivity in susceptible modules suggests that susceptibility is 

associated with altered coordination of more biological pathways than resilience, even 
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though resilience is associated with more DEGs. In turn, differential expression may indicate 

coordinated up- or downregulation of existing pathways without fundamentally altering 

pathway organization. Susceptibility thus is characterized by fundamental changes in the 

architecture of transcriptional networks rather than simply altered expression of existing 

networks, an important insight that is obscured in studies analyzing DEGs alone. Ultimately, 

designing therapeutic interventions to target differential connectivity networks rather than 

simply modulating DEGs may be critical to generate more effective treatments 

(Schrattenholz et al., 2010; Schrattenholz and Soskic, 2008).

We applied a systems biology approach to reveal novel insight into the transcriptional 

mechanisms of susceptibility and resilience. In this pursuit we have gleaned important 

biological insights from an abundance of data. Extracting meaning from such large data sets 

necessitates an exercise in reduction and clearly much more remains to be explored. The 

data and analyses generated will provide a valuable resource for other researchers. For 

example, referencing novel data sets to our coexpression networks offers the possibility to 

contextualize findings from other animal models or human data by identifying overlaps that 

may point to the broader transcriptional networks at play. By examining differential 

coexpression networks in addition to differential gene expression it is possible to obtain a 

more complete understanding of how susceptible and resilient responses to chronic social 

stress occur within specific brain regions over time. We demonstrate an approach to 

understand how numerous genes operate within functional clusters, across brain areas, to 

control stress responses, a critical element lacking in previous transcriptional analyses of 

depression-related phenotypes. In so doing, we identify novel molecular mechanisms 

controlling stress susceptibility. This work thus provides a template with which to 

characterize the molecular, cellular and circuit basis of pathological changes that underlie 

depression—or adaptive changes that promote resilience, information which can now be 

used to fundamentally advance the search for more effective antidepressant medications.

Experimental Procedures

(See also Extended Experimental Procedures)

Experimental subjects and CSDS

Mice were maintained on a 12h light-dark cycle (lights on at 7 am) at 22-25°. All 

experiments conformed to Mount Sinai IACUC guidelines. An established CSDS protocol 

induced depressive-like behaviors in mice (Berton et al., 2006). Male 8 week-old C57BL/6J 

mice were subjected to 10 daily, 5-min defeats by a novel 6-month-old CD1 aggressor 

mouse, then housed across a plexiglass divider for continued sensory contact. Control mice 

were housed in cages separated from another control. In viral manipulation experiments, a 

validated accelerated defeat protocol (2x daily, 10 min defeats, 4 days, starting 2 days after 

surgery) induced defeat during peak viral expression (Dias et al., 2014).

RNA isolation

Mice were killed directly from their home-cage 48h (early) or 28d (late) post CSDS or 28d 

post CSDS, 1h post 5min aggressor re-exposure (stress-primed). VHIP, PFC, NAC and 
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AMY were dissected and flash frozen. Tissue from 3-5 mice was pooled for n=3 (early) or 

n=4 (late, stress-primed) independent biological replicates per brain region, phenotype and 

time-point and RNA isolated as described (Bagot et al., 2015). For viral experiments, mice 

were killed 24h post-defeat.

Statistical and bioinformatic data analysis

Pairwise differential expression analysis were performed with Cuffdiff (Trapnell et al., 2012) 

using the negative binomial distribution and a nominal significance threshold of p<0.05 and 

Fold Change(FC) >1.3. Rank Rank Hypergeometric Overlap (RRHO) evaluated the overlap 

of differential expression lists between pairs of brain regions (Plaisier et al., 2010). 

Susceptible and resilient data sets were independently processed through weighted gene 

coexpression network analysis (WGCNA) (Langfelder et al., 2008; Zhang and Horvath, 

2005). Each module was assigned a unique, arbitrary color identifier.

Enrichment of GOs, cell-types, and DEGs in modules, as well as enrichment of module 

genes upon viral over-expression of a hub gene, was assessed through Fisher's exact test 

corrected for multiple testing (Benjamini-Hochberg FDR 0.05). A module differential 

connectivity (MDC) metric quantified differences in coexpression networks to identify 

phenotype-specific modules (Zhang et al., 2013). Key driver analysis (Zhang et al., 2013) 

applied to module-based unweighted coexpression networks derived from ARACNe 

(Margolin et al., 2006) identified module key driver genes.

Stereotaxic surgery

We over-expressed genes of interest using standard stereotaxic surgery procedures (Bagot et 

al., 2015) to bilaterally infuse 0.5 μl HSV-GFP, HSV-GFP-Sdk1, HSV-GFP-Neurod2 or 

HSV-GFP-Dkkl1 into PFC, VHIP or NAC.

Electrophysiology

Coronal slices were prepared 24h post viral injection. In current clamp mode, neurons in the 

ventral subiculum sub-region of VHIP—where our dissections focused—through which 

VHIP sends efferent projections (Groenewegen et al., 1987) – we characterized firing pattern 

(burst vs. regular) following reports of both neuronal types in this area (Figure 7A) (Cooper 

et al., 2003). As the large majority of neurons were regular firing (73/90) we limited analysis 

to this population. Spontaneous EPSCs were recorded for 3-5min in voltage clamp mode.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A large-scale multi-brain region transcriptomic cohort to probe stress 

susceptibility

• Reveals susceptible and resilient transcriptional networks across brain regions

• Identifies many novel hub genes that emerge in susceptible mice

• In vivo validation of key regulators at molecular, synaptic and behavioral levels
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Figure 1. Overview of Experimental Design and Differential Gene Expression in Susceptible and 
Resilient Mice after CSDS
(A) After CSDS 4 brain regions were collected at 3 post-defeat time-points (‘early’: 48h; 

‘late’: 28d; ‘stress-primed’: 28d + 1 h post stress) for transcriptional profiling to identify 

expression networks underlying susceptible and resilient phenotypic adaptations to stress. 

Schematic diagram of experimental approach. (B-D) Union heatmaps show FC of all genes 

significantly differentially expressed (FC>1.3, p<0.05) in either comparison for resilient vs. 

control (R vs. C; top panel) or susceptible vs. control (S vs. C; lower panel) rank ordered by 

fold change in the R vs. C comparison in NAC, PFC, AMY and VHIP early (B), late, and 

stress-primed (D) scaled by number of DEGs. (E) Matrix summarizes enrichment of 

oligodendrocyte, neuron, microglia, endothelial or astrocyte genes (Zhang et al., 2014) in 

DEGs upregulated (yellow) and downregulated (blue) in R vs. C (dark grey) and S vs. C 

(light grey) conditions, early (light pink), late (dark pink) and stress-primed (red) in AMY 

(purple), NAC (cream), PFC (green), and VHIP (lightblue). Darker color indicates 

increasing –log10(p-value). See also Figure S1 and Table S1.
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Figure 2. Inter-Regional Differential Expression Patterns Reveal Resilient- and Susceptible-
Specific Co-Upregulation Signatures
(A) RRHO maps compare threshold-free differential expression between pairs of brain 

regions in the resilient (R vs. C; upper panel) or susceptible (S vs. C; lower panel) 

transcriptome 48h post-CSDS. Each pixel represents the overlap between the resilient/ 

susceptible transcriptome of 2 brain regions (NAC, PFC, AMY, VHIP) with the significance 

of overlap (−log10(p-value) of a hypergeometric test; step size 200) color coded. The extent 

of overlap of upregulated genes is displayed in the bottom left corner, and in the top right the 

overlap of downregulated genes, illustrated in (B). Venn diagrams display the extent of 

overlap between genes upregulated in (C) NAC and PFC in resilient mice and (D) PFC and 

VHIP in susceptible mice, enriched gene ontology terms and examples of co-upregulated 

genes. See also Figure S2.
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Figure 3. Identification of Resilient- and Susceptible-Specific Coexpression Networks and Key 
Modules
(A) Multi-region coexpression network analysis identified coexpressed modules in resilient 

(left panel) and susceptible (right panel) mice across brain regions (NAC, PFC, AMY, 

VHIP) and time (early, late, stress-primed). Each module is arbitrarily assigned a unique 

color identifier, in bars on the left and top of each topological overlap matrix (TOM; lower 

panel). Increasing color intensity from white to dark red in TOM corresponds to increasing 

coexpression-based topological overlap. Dendograms (upper panel) show average linkage 

hierarchical clustering of genes. (B) Intra-modular connectivity of resilient and susceptible 

network modules was compared to that of corresponding genes in control mice to identify 

gain, loss or no change (upper panel). Pie charts (lower panel) summarize module 

differential connectivity (MDC) analysis. Proportionally, very few resilient modules (left 

panel) had significant MDC compared to more than half of all susceptible modules, which 

predominantly showed gain of connectivity. See also Figure S3. (C) Circos plot shows 

module name (ring 1), color (ring 2), differential expression relevance score (ring 3), and 

MDC score; increasing bar height shows increasing score (ring 4). Bar color indicates 

significance of enrichment for genes significantly up- or downregulated 48h post-defeat in R 

vs. C (RES) and S vs. C (SUS) with increasingly warm colors indicating increasing –

log10(p-value). MB and V modules show gain of connectivity relative to controls and are 
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enriched for genes that show opposing patterns of differential expression in PFC and NAC 

vs. VHIP. AMY SUS up (ring 5), AMY SUS down (ring 6), AMY RES up (ring 7), AMY 

RES down (ring 8), NAC SUS up (ring 9), NAC SUS down (ring 10), NAC RES up (ring 

11), NAC RES down (ring 12), PFC SUS up (ring 13), PFC SUS down (ring 14), PFC RES 

up (ring 15), PFC RES down (ring 16), VHIP SUS up (ring 17), VHIP SUS down (ring 18), 

VHIP RES up (ring 19), VHIP RES down (ring 20). See also Figure S3 and Table S3.
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Figure 4. Hub Gene Coexpression Networks of MB and V Modules in Susceptible Mice
(A) Network plot of hub genes within MB module. (B) Network plot of hub genes identified 

within V module. Node size is proportional to node's network centrality. Blue nodes indicate 

hub genes, red nodes indicate susceptible-specific hub genes and cyan halos indicate 

differential expression of a gene early post-defeat in at least 1 brain region. Edges reflect 

significant interactions between genes based on mutual information. Early post-defeat, 

Dkkl1 was differentially expressed in PFC (increased in R vs. C) and AMY (decreased in 

both S vs. C and R vs. C), and Neurod2 was differentially expressed in NAC (increased in R 
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vs. C) early post-defeat, whereas Sdk1 was not differentially expressed in any region. See 

also Figure S4 and Table S5.
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Figure 5. In Vivo Over-Expression of Susceptible-Specific Hub Gene, Dkkl1, Upregulates MB 
Module Members
Differential expression analysis identified 108 genes upregulated and 1075 genes 

downregulated in VHIP in HSV-Dkkl1-GFP vs. HSV-GFP at p<0.05, FC>1.3. (A) DEGs 

upregulated by Dkkl1 over-expression (yellow square) were significantly enriched in MB. 

Upregulated DEGs also enriched in V, Yellow and Navy. Increasing edge width indicates 

increasing fold enrichment (min=0, max=10). Increasing color gradient (grey to red) 

indicates increasing –log10(p-value) (min=0, max=21). Circle/square size indicates \ module 

size. (B) DEGs upregulated by Dkkl1 over-expression enriched in the MB network; left 
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panel full MB network, right panel MB hub genes (see also Figure 5A). Yellow circles: 

genes upregulated by Dkkl1 (34).Blue circles: genes downregulated by Dkkl1; not 

significantly enriched (6). Grey circles: genes not regulated by Dkkl1. See also Figure S5.
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Figure 6. In Vivo Over-Expression of Susceptible-Specific Hub Genes Induces a Susceptible 
Behavioral Profile
(A) Schematic of in vivo behavioral validation of susceptible-specific hub genes. 

Representative images of HSV-GFP infection in VHIP (B) and PFC (F). Scale bar=100μm. 

Mice injected with (C) HSV-Dkkl1-GFP, (D) HSV-Neurod2-GFP or (E) HSV-Sdk1-GFP in 

VHIP spent significantly less time in proximity to the wire mesh enclosure (Interaction 

Zone) compared to mice injected with HSV-GFP indicating increased susceptibility. Mice 

injected with the same viral constructs in PFC spent more time in the interaction zone (I; 

HSV-Sdk1-GFP) or an equivalent amount of time (G; HSV-Dkkl1-GFP, H; HSV-Neurod2-

GFP) compared to HSV-GFP injected mice indicating increased resilience or lack of 

susceptibility. * p<0.05, **p<0.01. Bar graphs show mean ±SEM. See also Figure S6.
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Figure 7. In Vivo Over-Expression of Susceptible-Specific Hub Genes in VHIP Increases sEPSC 
Frequency
Overexpression of Dkkl1 or Sdk1 increased the frequency of spontaneous EPSCs in VHIP 

neurons 24h after viral infection. (A) Among all 73 VHIP neurons recorded, 17 were burst 

firing (left) and 43 were regular firing (right). Subsequent synaptic analysis focused on 

regular firing neurons. (B) Representative sEPSCs from uninfected VHIP neurons (top left), 

neurons expressing GFP alone (bottom left), Dkkl1-GFP (top right) or Sdk1-GFP (bottom 

right). (C) sEPSC frequency was increased by either Dkkl1 or Sdk1 over-expression relative 

to uninfected or GFP infected neurons (the latter two did not differ). (D) sEPSC amplitude 
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was not changed by either Dkkl1-GFP or Sdk1-GFP overexpression. * p<0.05, **p<0.01. 

Bar graphs show mean ±SEM.
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