124 research outputs found

    3D Echo systematically underestimates right ventricular volumes compared to cardiovascular magnetic resonance in adult congenital heart disease patients with moderate or severe RV dilatation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three dimensional echo is a relatively new technique which may offer a rapid alternative for the examination of the right heart. However its role in patients with non-standard ventricular size or anatomy is unclear. This study compared volumetric measurements of the right ventricle in 25 patients with adult congenital heart disease using both cardiovascular magnetic resonance (CMR) and three dimensional echocardiography.</p> <p>Methods</p> <p>Patients were grouped by diagnosis into those expected to have normal or near-normal RV size (patients with repaired coarctation of the aorta) and patients expected to have moderate or worse RV enlargement (patients with repaired tetralogy of Fallot or transposition of the great arteries). Right ventricular end diastolic volume, end systolic volume and ejection fraction were compared using both methods with CMR regarded as the reference standard</p> <p>Results</p> <p>Bland-Altman analysis of the 25 patients demonstrated that for both RV EDV and RV ESV, there was a significant and systematic under-estimation of volume by 3D echo compared to CMR. This bias led to a mean underestimation of RV EDV by -34% (95%CI: -91% to + 23%). The degree of underestimation was more marked for RV ESV with a bias of -42% (95%CI: -117% to + 32%). There was also a tendency to overestimate RV EF by 3D echo with a bias of approximately 13% (95% CI -52% to +27%).</p> <p>Conclusions</p> <p>Statistically significant and clinically meaningful differences in volumetric measurements were observed between the two techniques. Three dimensional echocardiography does not appear ready for routine clinical use in RV assessment in congenital heart disease patients with more than mild RV dilatation at the current time.</p

    Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action

    Get PDF
    We use 2019 TROPOMI satellite observations of atmospheric methane in an analytical inversion to quantify methane emissions from the Middle East and North Africa at up to ∼25 km × 25 km resolution, using spatially allocated national United Nations Framework Convention on Climate Change (UNFCCC) reports as prior estimates for the fuel sector. Our resulting best estimate of anthropogenic emissions for the region is 35 % higher than the prior bottom-up inventories (+103 % for gas, +53 % for waste, +49 % for livestock, −14 % for oil) with large variability across countries. Oil and gas account for 38 % of total anthropogenic emissions in the region. TROPOMI observations can effectively optimize and separate national emissions by sector for most of the 23 countries in the region, with 6 countries accounting for most of total anthropogenic emissions including Iran (5.3 (5.0–5.5) Tg a−1; best estimate and uncertainty range), Turkmenistan (4.4 (2.8–5.1) Tg a−1), Saudi Arabia (4.3 (2.4–6.0) Tg a−1), Algeria (3.5 (2.4–4.4) Tg a−1), Egypt (3.4 (2.5–4.0) Tg a−1), and Turkey (3.0 (2.0–4.1) Tg a−1). Most oil–gas emissions are from the production (upstream) subsector, but Iran, Turkmenistan, and Saudi Arabia have large gas emissions from transmission and distribution subsectors. We identify a high number of annual oil–gas emission hotspots in Turkmenistan, Algeria, and Oman and offshore in the Persian Gulf. We show that oil–gas methane emissions for individual countries are not related to production, invalidating a basic premise in the construction of activity-based bottom-up inventories. Instead, local infrastructure and management practices appear to be key drivers of oil–gas emissions, emphasizing the need for including top-down information from atmospheric observations in the construction of oil–gas emission inventories. We examined the methane intensity, defined as the upstream oil–gas emission per unit of methane gas produced, as a measure of the potential for decreasing emissions from the oil–gas sector and using as reference the 0.2 % target set by the industry. We find that the methane intensity in most countries is considerably higher than this target, reflecting leaky infrastructure combined with deliberate venting or incomplete flaring of gas. However, we also find that Kuwait, Saudi Arabia, and Qatar meet the industry target and thus show that the target is achievable through the capture of associated gas, modern infrastructure, and the concentration of operations. Decreasing methane intensities across the Middle East and North Africa to 0.2 % would achieve a 90 % decrease in oil–gas upstream emissions and a 26 % decrease in total anthropogenic methane emissions in the region, making a significant contribution toward the Global Methane Pledge.</p

    Genes as Tags: The Tax Implications of Widely Available Genetic Information

    Get PDF
    This paper examines how progress in genetics\u27 specifically, the proliferation of knowledge about the human genome\u27 may influence the feasibility and desirability of a tax that is based on individual human endowments or ability. The paper explores various forms that such a genetic endowment tax-and-transfer regime might take and identifies some of the benefits and costs of such a regime. The authors take no position on whether a genetic endowment tax would be desirable or not. However, one contribution of the paper is to observe that current law in the U.S., which restricts the use of genetic information by insurers and employers, is equivalent to a form of genetic endowment tax. The paper also notes that, in the absence of a government-mandated transfer policy with respect to genetic endowments, private insurance markets may arise to fill the gap, allowing individuals to purchase insurance against the possibility of a bad genetic draw

    Inferring causal molecular networks: empirical assessment through a community-based effort.

    Get PDF
    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense

    Reduced costs with bisoprolol treatment for heart failure - An economic analysis of the second Cardiac Insufficiency Bisoprolol Study (CIBIS-II)

    Get PDF
    Background Beta-blockers, used as an adjunctive to diuretics, digoxin and angiotensin converting enzyme inhibitors, improve survival in chronic heart failure. We report a prospectively planned economic analysis of the cost of adjunctive beta-blocker therapy in the second Cardiac Insufficiency BIsoprolol Study (CIBIS II). Methods Resource utilization data (drug therapy, number of hospital admissions, length of hospital stay, ward type) were collected prospectively in all patients in CIBIS . These data were used to determine the additional direct costs incurred, and savings made, with bisoprolol therapy. As well as the cost of the drug, additional costs related to bisoprolol therapy were added to cover the supervision of treatment initiation and titration (four outpatient clinic/office visits). Per them (hospital bed day) costings were carried out for France, Germany and the U.K. Diagnosis related group costings were performed for France and the U.K. Our analyses took the perspective of a third party payer in France and Germany and the National Health Service in the U.K. Results Overall, fewer patients were hospitalized in the bisoprolol group, there were fewer hospital admissions perpatient hospitalized, fewer hospital admissions overall, fewer days spent in hospital and fewer days spent in the most expensive type of ward. As a consequence the cost of care in the bisoprolol group was 5-10% less in all three countries, in the per them analysis, even taking into account the cost of bisoprolol and the extra initiation/up-titration visits. The cost per patient treated in the placebo and bisoprolol groups was FF35 009 vs FF31 762 in France, DM11 563 vs DM10 784 in Germany and pound 4987 vs pound 4722 in the U.K. The diagnosis related group analysis gave similar results. Interpretation Not only did bisoprolol increase survival and reduce hospital admissions in CIBIS II, it also cut the cost of care in so doing. This `win-win' situation of positive health benefits associated with cost savings is Favourable from the point of view of both the patient and health care systems. These findings add further support for the use of beta-blockers in chronic heart failure

    Dissection of Pol II Trigger Loop Function and Pol II Activity–Dependent Control of Start Site Selection In Vivo

    Get PDF
    Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process

    Inferring causal molecular networks: empirical assessment through a community-based effort

    Get PDF
    Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks

    Inferring causal molecular networks: empirical assessment through a community-based effort

    Get PDF
    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense
    corecore