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Abstract

Inferring molecular networks is a central challenge in computational biology. However, it has 

remained unclear whether causal, rather than merely correlational, relationships can be effectively 

inferred in complex biological settings. Here we describe the HPN-DREAM network inference 

challenge that focused on learning causal influences in signaling networks. We used 

phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical 

model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by 

challenge participants. The networks spanned 32 biological contexts and were scored in terms of 

causal validity with respect to unseen interventional data. A number of approaches were effective 

and incorporating known biology was generally advantageous. Additional sub-challenges 

considered time-course prediction and visualization. Our results constitute the most 

comprehensive assessment of causal network inference in a mammalian setting carried out to date 

and suggest that learning causal relationships may be feasible in complex settings such as disease 

states. Furthermore, our scoring approach provides a practical way to empirically assess the causal 

validity of inferred molecular networks.

Introduction

Molecular networks are central to biological function and the data-driven learning of 

regulatory connections in molecular networks has long been a key topic in computational 

biology
1–6

. An emerging notion is that networks describing a certain biological process, for 

example signal transduction or gene regulation, may depend on biological context, such as 

cell type, tissue type, or disease state
7,8. This has motivated efforts to elucidate networks that 

are specific to such contexts
9–14

. In disease settings, networks specific to disease context 
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could improve understanding of the underlying biology and potentially be exploited to 

inform rational therapeutic interventions.

In this study, we considered inference of causal molecular networks, focusing specifically on 

signaling downstream of receptor tyrosine kinases. We define edges in causal molecular 

networks (“causal edges”) as directed links between nodes in which inhibition of the parent 

node can lead to a change in abundance of the child node (Fig. 1a), either by direct 

interaction or via unmeasured intermediate nodes (Fig. 1b). Such edges may be specific to 

biological context (Fig. 1c). The notion of a causal link is fundamentally distinct from a 

correlational one (Fig. 1d). Causal network inference is profoundly challenging
15,16

 and 

many methods for inferring regulatory networks connect together correlated, or mutually 

dependent, nodes that may not have any causal relationship. Some approaches (e.g. causal 

directed acyclic graphs
17–19

) are intended to infer causal relationships, but their success can 

only be guaranteed under very strong assumptions
15,20

 that are almost certainly violated in 

biological settings. This is due to many limitations – some possibly fundamental – in our 

ability to observe and perturb biological systems.

These observations imply that careful empirical assessment is essential to learn whether 

computational methods can provide causal insights in a specific biological setting of interest. 

Network inference methods are often assessed using data simulated from a known causal 

network structure (a so-called “gold-standard” network
5,17

). Such studies (and their 

synthetic biology counterparts
21

) are convenient and useful but at the same time limited 

because it is difficult to truly mimic the features of a specific biological system. Networks 

inferred from experimental data are often compared to the literature. However, since the goal 

of network inference is to learn novel regulatory relationships that could be specific to 

context, this is an inherently limited approach. Hypotheses generated by computational tools 

can be validated experimentally, but to date such assessment has been limited
9,10,19,22

.

Motivated by these observations, and with the support of the Heritage Provider Network 

(HPN), we developed the HPN-DREAM challenge to assess the ability to learn causal 

networks and predict molecular time-course data. The Dialogue for Reverse Engineering 

Assessment and Methods (DREAM) project
23

 (http://dreamchallenges.org) has run several 

challenges focused on network inference
22,24–27

. Here we focused on causal signaling 

networks in human cancer cell lines. Protein assays were carried out using reverse-phase 

protein lysate arrays
28,29

 (RPPA) that included functional phosphorylated proteins.

The HPN-DREAM challenge comprised three sub-challenges. Sub-challenge 1: Here, the 

task was to infer causal signaling networks using protein time-course data. To focus on 

networks specific to genetic and epigenetic background, the task spanned 32 different 

contexts, each defined by a combination of cell line and stimulus, and each with its own 

training and test data. The test data were used to assess the causal validity of inferred 

networks, as described below. A companion in silico data task also focused on causal 

networks but by design did not allow the use of known biology. Sub-challenge 2: 
Participants were tasked with predicting phosphoprotein time-course data under 

perturbation. The sub-challenge comprised both an experimental data task and an in silico 
data task and the same training datasets were used as in sub-challenge 1. Sub-challenge 3: 
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Participants were asked to develop methods to visualize these complex, multi-dimensional 

datasets.

In total across all sub-challenges, the scientific community contributed 178 submissions. In 

the network inference sub-challenge we found that several submissions achieved statistically 

significant results, providing substantive evidence that causal network inference may be 

feasible in a complex, mammalian setting (we discuss a number of relevant caveats below). 

The use of pre-existing biological knowledge (e.g. from online databases) appeared to be 

broadly beneficial. On the other hand, “FunChisq”, a method that did not incorporate any 

known biology whatsoever, was not only the top performer in the in silico data task, but also 

highly ranked in the experimental data task.

Challenge data, submissions and code are made available as a community resource through 

the Synapse platform
30

, which was used to run the challenge (https://www.synapse.org/

HPN_DREAM_Network_Challenge). Additionally, see Supplementary Notes 1–3 for 

descriptions of methods applied in the challenge.

Results

Training data for network inference

For the experimental data network inference task, participants were provided with RPPA 

phosphoprotein data from four breast cancer cell lines under eight ligand stimulus 

conditions. The 32 (cell line, stimulus) combinations each defined a biological context. Data 

for each context comprised time-courses for ~45 phosphoproteins (the set of 

phosphoproteins varied slightly between contexts; Supplementary Table 1). The training data 

included time-courses obtained under three kinase inhibitors and a control (DMSO, Fig. 2a; 

see Online Methods for details of experimental design, protocol, quality control and pre-

processing). The dataset is also available in an interactive online platform (http://

dream8.dibsbiotech.com) using the “Biowheel” design developed by the winning team of the 

visualization sub-challenge.

Participants were tasked with using the training data to learn causal networks specific to 

each of the 32 contexts. Networks had to comprise nodes corresponding to each 

phosphoprotein with directed edges between the nodes. The edges were required to have 

weights indicating strength of evidence in favor of each possible edge, but did not need to 

indicate sign (i.e. whether activating or inhibitory). For the companion in silico data task, 

participants were provided with data generated from a nonlinear differential equation model 

of signaling
12

. The task was designed to mirror some of the key features of the experimental 

setup and participants were asked to infer a single directed, weighted network (Online 

Methods; Supplementary Fig. 1). While the experimental data task tested both data-driven 

learning and use of known biology, the in silico data task focused exclusively on the former, 

and for that reason node labels (i.e. protein names in the underlying model) were 

anonymized.

Hill et al. Page 4

Nat Methods. Author manuscript; available in PMC 2016 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.synapse.org/HPN_DREAM_Network_Challenge
https://www.synapse.org/HPN_DREAM_Network_Challenge
http://dream8.dibsbiotech.com/
http://dream8.dibsbiotech.com/


Empirical assessment of causal networks

Standard statistical assessments of goodness-of-fit or predictive ability are not suited to 

assessing causal network inference. This is due to the fact that an incorrect causal network 

can nonetheless score very well on such metrics (e.g. two nodes that are highly correlated 

but not causally linked (Fig. 1d) may predict each other well). We therefore developed a 

procedure that leveraged interventional data to assess the causal validity of networks 

submitted to the experimental data task. The key concept was to assess the extent to which 

causal relationships encoded in inferred networks were in agreement with test data obtained 

under an entirely unseen intervention (Fig. 2a). Specifically, for a given context c, we 

identified the set of nodes that showed salient changes under a test inhibitor (here, inhibition 

of mTOR) relative to DMSO control (Fig. 2b; Online Methods). These nodes are causally 

influenced by the inhibitor target (mTOR) and can be regarded as descendants of the target 

in the underlying causal network for context c. We denote this “gold-standard” descendant 

set by  (Supplementary Fig. 2; note that  may include both downstream nodes and 

those influenced via feedback loops within the experimental timeframe). For each submitted 

context-specific network, we computed a predicted set of descendants of mTOR, which we 

call . We then compared  to  to obtain an area under the receiver operating 

characteristic curve (AUROC) score (Fig. 2c) for each context c, resulting in a set of 32 

AUROC scores for each team. These were used to rank teams within each context. An 

overall score was obtained by computing the mean rank across contexts (see Online 

Methods) and this determined the final ranking (Fig. 2d, Table 1 and Supplementary Fig. 

3a). We tested robustness of the rankings using a subsampling strategy (see Online 

Methods). In Table 1 we include mean AUROC scores across the 32 contexts. Mean 

AUROC scores complement mean ranks by giving information on the absolute level of 

performance (the two metrics are highly correlated; see Supplementary Fig. 3c).

For the in silico data task, the true causal network was known (Online Methods; 

Supplementary Fig. 4) and this was used to obtain an AUROC score for each participant that 

determined the final rankings (Table 1 and Supplementary Fig. 3b).

An alternative scoring metric to AUROC is area under the precision-recall curve (AUPR), 

which is often used when there is an imbalance between the number of positives and 

negatives in the gold-standard
31

. Some of our gold-standard datasets were imbalanced and 

we therefore compared rankings based on AUROC and AUPR, finding reasonable 

agreement (Online Methods; Supplementary Figs. 5 and 6).

Performance of individual teams and ensemble networks

For the experimental data network inference task, Figure 3a shows the 32 AUROC scores for 

each team. 22 teams attained significant AUROC scores (FDR < 0.05; see Online Methods) 

in at least 25% of the contexts and 8 teams attained significant scores in at least 50% of 

contexts (Supplementary Fig. 7a). Conversely, for 25 out of the 32 contexts, 5 or more teams 

attained significant AUROC scores (Supplementary Fig. 7b). For the in silico data task, the 

top 14 teams achieved significant AUROC scores (Supplementary Fig. 3b). The fact that 

several teams achieved significant scores with respect to causal performance metrics 

suggests that causal network inference may be feasible in this setting.
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Scores on the experimental data and in silico data network inference tasks were modestly 

correlated (r = 0.35, p = 0.011), but better correlated when comparing only teams that did 

not use prior information (r = 0.68, p = 0.002; Fig. 3b and Supplementary Note 4). To 

identify teams that performed well across both tasks we calculated a combined ranking 

(average of ranks for experimental and in silico data tasks; Table 1, Fig. 3b and 

Supplementary Fig. 3d). Table 1 shows scores and method summaries for submissions 

ranked highly in either task or under the combined ranking; information for all teams can be 

found in Supplementary Table 2.

To test the notion of “crowdsourcing”
22,27,32,33

 for causal network inference, we combined 

inferred networks across all teams and assessed the resulting ensemble or aggregate 

submission (Online Methods; Fig. 3c and Supplementary Fig. 8a). For the experimental data 

task, the aggregate submission slightly outperformed the highest-ranked submission (mean 

AUROC of 0.80 and 0.78 respectively) and, for the in silico data task, it ranked within the 

top 5 (AUROC = 0.67). Combinations of as few as 25% of randomly chosen submissions 

performed well on average (mean AUROC of 0.72 and 0.64 for experimental and in silico 
data tasks respectively; Fig. 3d and Supplementary Fig. 8b).

A total of 41 of the 80 participating teams provided details about methods used 

(Supplementary Note 1) and we used this information to classify the submissions (Fig. 3e,f, 

Table 1 and Supplementary Note 5). In line with findings from previous DREAM 

challenges
22,32

, we observed no clear relationship between method class and performance. 

However, we note that the boundaries between method classes are not always well defined 

and that performance can be influenced by additional factors, including details of pre-

processing and implementation.

Top-performing methods for causal network inference

The best-scoring method for the experimental data task, "PropheticGranger with heat 

diffusion prior" by Team1, used a prior network created by averaging similarity matrices 

obtained via simulated heat diffusion applied to links derived from the Pathway Commons 

database
34

. This was then coupled with an L1-penalized regression approach that considered 

not only past but also future time points (see Supplementary Note 1 for a detailed 

description). The best scoring approach for the in silico data network inference task, and the 

most consistent performer across both data types, was the “FunChisq” method by Team7 

(see Supplementary Note 1). This approach used a novel functional chi-square test to 

examine functional dependencies among the variables and did not use any biological prior 

information. Before applying FunChisq, the abundance of each protein was discretized by 

the Ckmeans.1d.dp method
35

, with the number of discretization levels automatically 

selected using the Bayesian information criterion on a Gaussian mixture model.

Incorporating pre-existing biological knowledge

On average, teams that used prior biological information out-performed those that did not 

(Fig. 4a; one-sided rank-sum test, p = 0.032). The submission ranked second used only a 

prior network and did not use the protein data. However, use of a prior network did not 

guarantee good performance (mean AUROC scores ranged from 0.49 to 0.78 for teams 
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using a prior network). Interestingly, the same prior network that was itself ranked second 

was used in both the top-performing submission and the submission ranked 43rd, the 

difference being the approach used to analyze the experimental data. Conversely, not using a 

prior network did not necessarily result in poor performance (mean AUROC scores ranged 

from 0.49 to 0.71 for teams not using a prior network). The top-performing teams using 

prior networks in the experimental data task did not perform as well in the in silico data task 

(Fig. 3b).

To further investigate the influence of known biology, we combined submitted prior 

networks to form an aggregate prior network (Online Methods). This outperformed the 

individual prior networks and had a similar score to the aggregate submission described 

above (mean AUROC = 0.79). We combined the aggregate prior network with each of the 

two top methods (PropheticGranger and FunChisq) in varying proportions (Fig. 4b). 

Combining FunChisq with the aggregate prior improved upon the aggregate prior alone (this 

was not the case for PropheticGranger). Finally, we considered three-way combinations of 

PropheticGranger, FunChisq and the aggregate prior; the highest-scoring combination 

consisted of 20% PropheticGranger, 50% FunChisq and 30% aggregate prior (mean AUROC 

of 0.82, Supplementary Fig. 9). The combination weights were set by optimizing 

performance on the test data itself; we note that since additional test data were not available 

we cannot rigorously assess the combination analyses.

Context-specific performance

For the experimental data task, participants were required to infer networks specific to each 

context. The overall scoring metric is an average over all contexts; to gain additional insight 

we further investigated performance by context. Figure 4c shows, for each context, 

performance of the aggregate submission and aggregate prior, together with the top 25 

AUROC scores. In line with their good overall performance, the aggregates performed well 

relative to individual submissions in most contexts. The aggregate prior network performed 

particularly well for cell line MCF7, while in BT549 it performed less well for several 

stimuli. This supports the notion that biological contexts differ in the extent to which they 

agree with known biology. The aggregate submission offered the largest improvements over 

the aggregate prior in settings where the latter performed less well, suggesting that 

combining data-driven learning with known biology may offer the most utility in non-

canonical settings.

Crowdsourced context-specific signaling hypotheses

The context-specific aggregate submission networks provide crowdsourced signaling 

hypotheses; one such network is shown in Figure 5a. Comparing the aggregate submission 

networks with the aggregate prior network helps to highlight potentially novel edges: a list 

of context-specific edges with their associated scores is provided as a resource in 

Supplementary Table 3. Dimensionality reduction suggested that differences between cell 

lines are more prominent than between stimuli for a given cell line (Fig. 5b; Online 

Methods), in line with the notion that (epi)genetic background plays a key role in 

determining network architecture.
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Time-course prediction sub-challenge

Here, participants were tasked with predicting phosphoprotein time-courses obtained under 

interventions not seen in the training data (Online Methods). We assessed predictions by 

direct comparison with the test data using root mean squared error (RMSE; Online Methods 

and Supplementary Note 6). In contrast to the causal network inference sub-challenge, the 

focus was on predictive ability rather than causal validity. Submissions are summarized in 

Supplementary Table 4 and Supplementary Note 2. Testing robustness of team ranks gave 

two top-performers for the experimental data task and a single top-performer for the in silico 
data task (Online Methods;). The two top-performers for the experimental data task took 

different approaches. Team42 (ranked second) simply calculated averages of values in the 

training data. Team10 (ranked third) used a truncated singular value decomposition to 

estimate parameters in a regression model. This method also ranked highly for the in silico 
data task and was the most consistent performer across both data types. Team44, the top-

ranked team, was not eligible to be named as a top-performer (due to an incomplete 

submission; Supplementary Note 7), but their approach also consisted of calculating 

averages (the good performance of averaging may be explained to some degree by a 

shortcoming with the RMSE metric used here, see Supplementary Fig. 10). Team34, the top-

performer for the in silico data task, used a model informed by networks learned in the 

network inference sub-challenge. This suggests that network inference can also play a useful 

role in purely predictive analyses.

Visualization sub-challenge

In total, 14 teams submitted visualizations that were made available to the HPN-DREAM 

Consortium members who then voted for their favorite (Online Methods). The winning entry 

“Biowheel” is designed to enhance the visualization of time course protein data and aid in its 

interpretation (see Supplementary Note 3; http://dream8.dibsbiotech.com). The data 

associated with a cell line are plotted to depict protein abundance levels by color, as in a heat 

map, but displayed as a ring, or wheel. Time is plotted along the radial axis and increases 

from the center outwards. The interactive tool provides a way to mine data by displaying 

data subsets in various ways.

Discussion

Inferring molecular networks remains a key open problem in computational biology. This 

study was motivated by the view that empirical assessment will be essential in catalyzing the 

development of effective methods for causal network inference. Such methods will be 

needed to systemically link molecular networks to the phenotypes they influence. While 

there are many theoretical and practical reasons why causal network inference may fail, our 

results, obtained via a large-scale, community effort with blinded assessment, suggest that 

the task may be feasible in complex mammalian settings. By “feasible” we mean reaching a 

performance level significantly better than chance, and this was achieved by a number of 

submissions, including approaches that did not use any prior information. Nevertheless, our 

approach and findings are subject to caveats that we discuss below.
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We put forward an assessment approach that focuses on causal validity and is general 

enough to be potentially applicable in a variety of biological settings. However, it is 

important to take note of several caveats. First, the procedure relies on specificity of test 

inhibitors. However, if the inhibitor were highly non-specific, it would likely not be possible 

to achieve good results, nor for a prior network to perform well, because predictions 

themselves are based on assumed specificity. In addition, data suggest that the mTOR 

inhibitor used here does have good specificity. Second, the procedure used only one of the 

inhibitors for testing. Although not possible in a “live” challenge setting, as training and test 

data must be fixed at the outset, Hill, Nesser et al.
36

 used a cross-validation-type scheme that 

iterated over inhibitors. Such an approach may provide a more comprehensive assessment 

and indeed the ranking of methods could change when including additional inhibitors. Third, 

the procedure does not distinguish between direct and indirect causal effects. Finally, all 

downstream targets, whether context-specific or not, were weighted equally. Metrics that 

emphasize context-specific effects will be an important avenue for future research and would 

likely shed further light on the utility of priors (that are not usually context-specific).

Several submissions used novel methods or incorporated novel adaptations to existing 

methods (Supplementary Tables 2 and 4). Notably, the best performing team for the network 

inference in silico data task developed a novel procedure (FunChisq) that also performed 

well on the experimental data task without use of any prior information, increasing 

confidence in its robustness. Indeed, the ability to make such comparisons is a key benefit of 

running experimental and in silico challenges in parallel. Although some approaches 

performed well on one data type only (Fig. 3b), the overall positive correlation between 

experimental and in silico scores is striking given that they were based on different data and 

assessment metrics. Teams that did not use prior information were relatively well correlated 

(Fig. 3b), suggesting that good performers among these teams on the in silico data task could 

perform competitively on experimental data if extended to incorporate known biology.

The observation that prior information alone performs well reflects the fact that much is 

already known about signaling in cancer cells and suggests that causal networks are not 

entirely “re-wired” in these cells. On the other hand, our analysis revealed contexts which 

deviate from known biology; such deviations are likely particularly important for 

understanding disease-specific dysregulation and therapeutic heterogeneity. Furthermore, it 

is likely that the literature - and priors derived from it - is biased towards cancer and for that 

reason priors may be less effective in other disease settings. We anticipate that in the future a 

combination of known biology with data-driven learning will be important in elucidating 

networks in specific disease states.

A previous DREAM challenge also focused on signaling networks in cancer
26

. However, the 

scoring metric was predictive rather than causal (RMSE between predicted and test data 

points) with a penalty related to sparseness of the inferred network. Thus, the challenge did 

not focus on causal validity per se, and indeed a network with causally incorrect edges could 

yield a good RMSE score. Our assessment approach shares similarities with other 

approaches in the literature, including Maathuis et al.
37

 who focused on inferring networks 

from static observational data and Olsen et al.
38

 who used a different scoring metric, 

considering predicted downstream targets in close network proximity to the inhibited node.
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There are several directions that future challenges could take. The causal scoring approach 

proposed here could be applied in other settings, e.g. gene regulatory or metabolic networks. 

In the interests of open and transparent science, and to provide a community resource, 

participants were encouraged to make source code available. In order to facilitate post-

challenge analyses, future challenges may benefit from submission of executable programs 

that could allow for more controlled and detailed comparisons between methods.

It remains unclear to what extent the ranking of specific methods submitted to the challenge 

would generalize to different data-types and biological processes. In our view, it is still too 

early to say whether there could emerge broadly effective “out-of-the-box” methods for 

causal network inference, analogous to methods used for some machine learning tasks. Due 

to the complexity of causal learning and the many factors that could be application-specific 

we recommend that at the present time network inference efforts should whenever possible 

include at least some interventional data and that suitable scores, such as those described in 

this paper, should be used to assess network inference in a causal sense. Such an assessment 

would test whether inference is effective in the setting of interest.

Online Methods

Challenge data

The HPN-DREAM network inference challenge comprised three sub-challenges: causal 

network inference (SC1), time-course prediction (SC2) and visualization (SC3). Each of 

SC1 and SC2 consisted of two tasks, one based on experimental data (SC1A/SC2A) and the 

other based on in silico data (SC1B/SC2B).

Experimental data—The experimental data and associated components of the challenge 

are outlined in Figure 2a. Provided for the challenge were protein data from four breast 

cancer cell lines (UACC812, BT549, MCF7, BT20), All cell lines were acquired from 

ATCC, authenticated by STR analysis, and tested for mycoplasma contamination. The cell 

lines were chosen because they represent the major subtypes of breast cancer (basal, 

luminal, claudin-low, and HER2-amplified) and are known to have different genomic 

aberrations
40–42

. Each cell line sample was stimulated with 8 ligands (serum, PBS, EGF, 

Insulin, FGF1, HGF, NRG1, IGF1). We refer to each of the 32 possible combinations of cell 

line and stimulus as a biological context. For each context, data comprised time-courses for 

total proteins and post-translationally modified proteins, obtained under four different kinase 

inhibitors and a DMSO control. Full details of sample preparation, data generation, quality 

control, and pre-processing steps can be found in Hill, Nesser et al.
36

 and on the Synapse
30 

webpages describing the challenge (https://www.synapse.org/

HPN_DREAM_Network_Challenge). In brief, cell lines were serum-starved for 24 hours 

and then treated for two hours with an inhibitor (or combination of inhibitors or DMSO 

vehicle alone). Cells were then either harvested (0 time point) or stimulated by one of the 

eight stimuli for 5, 15, 30, or 60 minutes, or 2, 4, 12, 24, 48, or 72 hours prior to protein 

harvest and analysis by reverse-phase protein array (RPPA) at MD Anderson Cancer Center 

Functional Proteomics Core Facility (Houston, Texas).
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RPPA is an antibody-based assay that provides quantitative measurements of protein 

abundance
28,43

. The MD Anderson RPPA core facility maintains and updates a standard 

antibody list on the basis of antibody quality control as well as a variety of other factors, 

including scientific interest. Antibodies available for use in this assay are therefore enriched 

for components of receptor tyrosine kinase (RTK) signaling networks and cancer-related 

proteins. For each cell line, we used the standard antibody list available at the time the 

assays were performed. 183 antibodies were used to target total (n = 132), cleaved (n = 3) 

and phosphoproteins (n = 48; Supplementary Table 1). As part of the RPPA pipeline, quality 

control was performed to identify slides with poor antibody staining. Antibodies with poor 

quality control scores were excluded from the dataset. During the challenge period, it 

became known to challenge organizers that several further antibodies were of poor quality. 

Participants were advised not to include the associated data in their analyses and these data 

were excluded from the scoring process. Measurements for each sample were corrected for 

protein loading and several outlier samples with large correction factors were identified and 

removed. The UACC812 data were split across two batches. A batch-normalization 

procedure was applied
36

 to enable the data from the two batches to be combined. The 

experimental data used in the challenge is a subset of the data reported in Hill, Nesser et 
al.

36
.

The inhibitors were chosen because they target key components of the RTK signaling 

cascades assessed by the RPPA assay and are also relevant to breast cancer. Participants 

were provided with a training dataset consisting of data for four out of the five inhibitor 

regimes (DMSO, PD173074 (FGFRi), GSK690693 (AKTi), GSK690693+GSK1120212 

(AKTi+MEKi)). Note that there was no training data available for the AKTi+MEKi inhibitor 

regime for cell lines BT549 (all stimuli) and BT20 (PBS and NRG1 stimuli). Data for the 

remaining inhibitor (AZD8055 (mTORi)) formed a test dataset, unseen by participants and 

used to evaluate submissions to the challenge.

The focus of the challenge was on short-term phosphoprotein signaling events and not on 

medium-to-long-term changes over hours and days (e.g. re-wiring of networks due to 

epigenetic changes arising from prolonged exposure to an inhibitor). Therefore the training 

data consisted only of phosphoprotein data (~45 phosphoproteins for each cell line) up to 

and including the four-hour time point; in the challenge this dataset was referred to as the 

“Main” dataset. In case some participants found the additional data useful, measurements for 

the remaining antibodies and time points were also made available in a “Full” dataset. The 

test data (and challenge scoring) also focused only on phosphoproteins up to and including 

the four-hour time point. At the time of the challenge all data were unpublished (the training 

dataset was made available to participants through the Synapse platform).

In silico data—The in silico data and associated components of the challenge are outlined 

in Supplementary Figure 1. Simulated data were generated from a nonlinear ordinary 

differential equation (ODE) model of the ERBB signaling pathway. Specifically, the model 

was an extended version of the mass action kinetics model developed by Chen et al.
12

. 

Training data were simulated for 20 network nodes (Supplementary Fig. 4; 14 

phosphoproteins, two phospholipids, GTP-bound RAS and three dummy nodes that were 

unconnected in the network) under two ligand stimuli (each at two concentrations; applied 
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individually and in combinations) and under three inhibitors targeting specific nodes in the 

network or no inhibitor. Mirroring the experimental data, inhibitors were applied prior to 

ligand stimulation at t=0. Time-courses consisted of 11 time points (0, 1, 2, 4, 6, 10, 15, 30, 

45, 60, 120 minutes) and three technical replicates were provided for each sample. A 

measurement error model was developed to reflect the antibody-based readout of RPPA 

assays and its technical variability. Node names were anonymized to prevent prior 

information being used to trivially reconstruct the network. Further details of the simulation 

model can be found in Supplementary Note 8.

An in silico test dataset was also generated to assess submissions to the time-course 

prediction sub-challenge and consisted of time-courses for each node and stimulus, under in 
silico inhibition of each network node in turn. After the final team rankings for the in silico 
data task were calculated, two minor issues concerning the in silico test data were 

discovered. The issues were corrected, test data were regenerated and final rankings and 

final leaderboards were updated. The top-performing teams remained unchanged by this 

update. See Supplementary Note 8 for further details.

Challenge questions and design

For the network inference sub-challenge experimental data task, participants were asked to 

use the training data to learn 32 signaling networks, one for each of the (cell line, stimulus) 

contexts. Networks had to contain nodes for each phosphoprotein in the training data (the 

node set therefore varied depending on cell line) and network edges had to be directed (but 

unsigned). The networks were expected to describe causal edges and this was reflected in 

the scoring (see below). A causal edge was defined as one where inhibition of the parent 

node can result in a change in the abundance of the child node that is not fully mediated via 

any other measured node (but the influence can take place via unmeasured nodes; Fig. 1). 

Participants were asked to submit confidence scores (between 0 and 1) for each possible 

directed edge in each network. Node names were not anonymized for the experimental data 

task and participants were allowed to use pre-existing biological information (e.g. from 

literature and online databases) in their analyses.

For the network inference sub-challenge in silico data task, participants were asked to infer a 

single network with 20 nodes (one for each variable in the training data) and directed edges 

corresponding to predicted causal relationships between the nodes. Submissions comprised a 

set of confidence scores for each possible directed edge in the network.

For the time-course prediction sub-challenge, participants were tasked with predicting time-

courses under interventions not contained in the training dataset. For the experimental data 

task, predictions were requested for five test kinase inhibitors (participants were informed of 

the inhibitor targets). For each inhibitor, time-courses consisting of seven time points (as in 

the training data) had to be predicted for each of the 32 contexts and for all phosphoproteins 

(except those targeted by the inhibitor). The in silico data task proceeded in an analogous 

fashion, with participants asked to predict time-courses under inhibition of each of the 20 

nodes in turn. Predicted time-courses were required for each node for each of the eight 

stimulus contexts.
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The visualization sub-challenge asked participants to devise novel approaches to represent 

the dataset provided with the challenge. The submission format was a schematic mock-up of 

the visualization.

The challenge was run over a period of three months. For the network inference and time-

course prediction sub-challenges participants were able to make submissions and obtain 

feedback via a leaderboard on a weekly basis (Supplementary Note 9). The frequency of 

feedback was chosen so as to obtain a balance between actively engaging participants and 

avoiding overfitting of models to the test data. To address this overfitting issue, other 

DREAM challenges
33,44

 used a second held-out test dataset for final scoring of submissions. 

However, this was not possible here due to the small number of inhibitor conditions in the 

data.

To incentivize participation, top-performing teams were awarded a modest cash prize 

(provided by the Heritage Provider Network), invitations to present results at a conference 

and co-author the paper describing the challenge, and (for SC1A only) the opportunity to 

have their method developed as a Cytoscape Cyni App
39,45

. See the Synapse pages 

describing the challenge (www.synapse.org/#!Synapse:syn1720047) and Supplementary 

Note 7 for further details.

Scoring procedure for the network inference sub-challenge experimental data task

Interventional test data—For the experimental data task, we developed a scoring 

procedure that used held-out interventional data to assess networks submitted by 

participants. The procedure assessed the extent to which causal relationships encoded in 

network submissions agreed with causal information contained in the test data. Using the 

held-out mTOR inhibitor data, we identified those phosphoproteins that showed a salient 

change in abundance under the inhibitor, relative to DMSO control (Fig. 2b). Specifically, let 

 and  denote the mean abundance levels of phosphoprotein i for (cell line, stimulus) 

context c under DMSO control and mTOR inhibition respectively (mean values calculated 

over 7 time points on log-transformed data; any replicates at each time point were averaged 

prior to taking the mean). A paired t-test was used to assess whether  is significantly 

different to , resulting in a p-value pi,c for each phosphoprotein and context.

Some phosphoproteins show a clear stimulus response under DMSO, characterized by a 

marked increase and subsequent decrease in abundance over time (a “peak” shape). In these 

cases, a change in abundance due to the mTOR inhibitor may be observable only at 

intermediate time points. Since the paired t-test described above considers all time points, 

the effect may be masked. Therefore we used a heuristic to detect phosphoproteins with a 

peak shaped time-course under DMSO and re-performed the paired t-test over the 

intermediate time points within the peak only. The resulting p-value was retained if smaller 

than the original. For each context, a test is performed for each phosphoprotein. We 

corrected for multiple testing within each context using the median adaptive linear step-up 

procedure
46

, resulting in q-values (FDR-adjusted p-values) qi,c. Note that due to the heuristic 

step, the q-values qi,c should not be interpreted formally.
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For each context, a phosphoprotein is determined to show a change under the mTOR 

inhibitor if the following two conditions are satisfied: (1) qi,c < 0.05 and (2) 

where σi,c is the pooled replicate standard deviation for the DMSO and mTOR inhibitor 

data. The second condition acts as a conservative filter to ensure effect sizes are not small 

relative to replicate variation. We work under the assumption that mTOR inhibition will lead 

to changes in abundance of all descendants of mTOR in the underlying context-specific 

causal network (i.e. changes are observed in any node for which a directed path exists from 

mTOR to that node; this can include downstream nodes as well as those that are influenced 

via feedback loops within the timescale of the experiments). Then, the above procedure 

results in context-specific “gold-standard” sets of causal descendants of mTOR 

 (Supplementary Fig. 2).

The scoring metric—For each context c, we compared the “gold-standard” descendant 

set  (obtained from the held-out test data) with predicted descendant sets obtained from 

context-specific networks submitted by participants (Fig. 2c). For context c, a submitted 

network consisted of edge confidence scores for each possible directed edge. Placing a 

threshold τ on edge scores resulted in a network structure consisting only of those edges 

with a score greater than τ and from this network we obtained a predicted set of descendants 

of mTOR (at threshold τ), denoted by . Comparing  with  gave the 

number of predicted descendants that are correct (true positives; TP(τ)) and the number of 

predicted descendants that are incorrect (false positives; FP(τ)). Varying the threshold τ and 

plotting TP(τ) against FP(τ) resulted in a receiver operating characteristic (ROC) curve and 

the scoring metric was the area under this curve (normalized to be between zero and one; 

AUROC). For each team AUROC scores were calculated for each of the 32 contexts.

The statistical significance of AUROC scores was determined using simulated null 

distributions, generated by calculating AUROC scores for 100,000 random networks, each 

consisting of random edge scores (drawn independently from the uniform distribution on the 

unit interval [0,1]). Gaussian fits to the null distributions were used to calculate p-values. For 

each context, the set of p-values (across all teams) underwent multiple testing correction 

using the Benjamini-Hochberg FDR procedure. There were two contexts (BT549, NRG1 

and BT20, insulin) for which no team achieved a statistically significant (FDR < 0.05) 

AUROC score (Supplementary Fig. 7b). These two contexts were therefore regarded as too 

challenging and were disregarded in the scoring procedure.

Teams were ranked within each context according to AUROC score. The resulting 30 rank 

scores for each team were then averaged to obtain a mean rank score. Final team rankings 

were obtained using mean rank scores (Fig. 2d).

During the challenge period, participants were informed only that submitted networks would 

be scored using test data obtained under interventions not present in the training data, but 

details of the scoring procedure and the identity, nature and number of interventions in the 

test data were not revealed. Note that participants knew identities of inhibitors in the training 

data.
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Gold-standard network and scoring metric for the network inference sub-challenge in 
silico data task

The true causal network underlying the variables in the in silico data was obtained from the 

data-generating nonlinear ODE model (Supplementary Fig. 4). However, deriving the causal 

network from the equations was non-trivial due to the model containing more variables than 

the 20 variables present in the challenge data and variables appearing in the model in 

complexes. Details of how the causal network was obtained can be found in Supplementary 

Note 8.

Each team submitted a single network consisting of a set of edge scores. This was compared 

directly to the gold-standard causal network to produce an ROC curve (by calculating the 

number of true positive and false positive edges at various edge score thresholds) and 

AUROC was used as the scoring metric. Self-edges were not considered for scoring. 

Statistical significance of AUROC scores was determined analogously to the experimental 

data task.

Alternative scoring metrics for the network inference sub-challenge

We used AUROC as the scoring metric for the network inference sub-challenge but we note 

that alternative metrics could have been used. In particular, the area under the precision-

recall curve (AUPR) is often used when there is an imbalance between the number of 

positives and negatives in the gold standard
31

. While many contexts in the experimental data 

task had a reasonable balance (median ratio of negatives to positives of 1.71), some contexts 

had many more negatives than positives and there was also an imbalance for the in silico 
data task (ratio of negatives to positives of 4.14; Supplementary Fig. 5). Therefore AUPR 

could have been an appropriate choice in several cases. For this reason, at the end of the 

challenge period we performed comparisons of final team rankings (obtained using 

AUROC) against rankings obtained using AUPR, or a combination of both AUROC and 

AUPR (Supplementary Fig. 6). For the experimental data task, the AUROC-based rankings 

showed good agreement with those obtained under either alternative metric. Agreement was 

not as strong for the in silico data task, but still reasonable with all metrics resulting in the 

same top performer. Furthermore, of the top ten teams under AUROC, only 2 are outside the 

top 10 under AUPR and they are ranked 12 and 13. Similarly, only 2 of the top 10 teams 

under AUPR are not in the top 10 under AUROC, and they are ranked 11 and 12. For 

openness and transparency, scores and rankings based on AUPR and the combination metric 

were included in the final leaderboards (available through Synapse: https://

www.synapse.org/HPN_DREAM_Network_Challenge; combination metric scores are also 

included in Supplementary Table 2).

Scoring metric for the time-course prediction sub-challenge

For both experimental data and in silico data, predictions of context-specific time-courses 

under inhibitors not contained in the training data were directly compared against context-

specific test data obtained under the corresponding inhibitor. Prediction accuracy was 

quantified using root mean squared error (RMSE) with comparisons made on log-

transformed data after averaging of replicates. RMSE scores were calculated separately for 

parts of the data that could potentially be on different scales. We refer to each portion of the 
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data where an RMSE score was calculated as a “data block”. Teams were ranked within each 

“data block” and a mean rank calculated to obtain a final ranking. Some blocks of data, 

where no team achieved a statistically significant score, were disregarded in the scoring 

procedure (Supplementary Tables 5 and 6; FDR < 0.05). Full details of scoring appear in 

Supplementary Note 6.

Visualization sub-challenge scoring

HPN-DREAM challenge participants scored submitted visualization proposals. 36 

participants cast votes by assigning ranks (from 1 to 3) to their three favorite submissions 

(the remaining submissions were all assigned a rank of 4). Teams were then ranked 

according to mean rank across the 36 votes (Supplementary Fig. 11).

Robustness of ranking under subsampling

To ensure team rankings were robust in the network inference and time-course prediction 

sub-challenges, we performed a subsampling analysis in which, for each of 100 iterations, 

50% of the test data were removed at random and rankings of submissions were recalculated 

using the remaining test data. Team A was considered to be robustly ranked above team B if 

the former outranked the latter in at least 75% of iterations.

For the network inference sub-challenge experimental data task, test data were subsampled 

by either (i) removing 50% of the phosphoproteins for each (cell line, stimulus) context 

when making comparisons between “gold-standard” and predicted descendant sets 

(Supplementary Fig. 12a), or (ii) by removing 50% of the contexts (i.e. scoring was based on 

15 contexts instead of 30; Supplementary Fig. 12b). The top team (Team1) outranked the 

team ranked second (Team2) in 76% and 97% of iterations for subsampling methods (i) and 

(ii) respectively. For the network inference sub-challenge in silico data task, 50% of the 

edges (and non-edges) in the gold-standard network were used for scoring (Supplementary 

Fig. 12c). The top scoring performer (Team7) had a higher AUROC score relative to the 

team ranked second (Team11) in 89% of the subsampling iterations.

For the experimental and in silico data tasks comprising the time-course prediction sub-

challenge, test data were subsampled by either (i) removing 50% of the “data blocks” (see 

above), or (ii) by subsampling 50% of the data points within each “data block”. For the 

experimental data task, the top-ranked team (Team44) outranked the team ranked second 

(Team42) in 90% and 54% of iterations for subsampling methods (i) and (ii) respectively. 

Due to the 75% threshold not being met for one of the subsampling methods, Team44 was 

not regarded as being ranked robustly above Team42. Team42 outranked the team ranked 

third (Team10) in 60% and 70% of iterations and so, again, the ranking was not regarded as 

robust. However, Team10 was robustly ranked above the team ranked fourth (93% and 94% 

of iterations). Team44 was not eligible to be named as a top-performer due to an incomplete 

submission (Supplementary Note 7) and so the teams ranked second and third (Team42 and 

Team10) were named as top-performers. For the in silico data task, the top team (Team34) 

outranked the team ranked second in 95% and 100% of iterations for subsampling methods 

(i) and (ii) respectively.
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Crowdsourced analyses: aggregate submission networks and aggregate prior network

Aggregate submission networks were obtained by integrating predicted networks across all 

teams (to avoid bias, a filtering process was used to remove correlated submissions from the 

aggregation; 66 and 57 teams formed the aggregate networks for the experimental and in 
silico data tasks respectively; Supplementary Note 10 and Supplementary Table 2). For the 

experimental data task, an aggregate network was formed for each of the 32 contexts. Each 

aggregate submission network consisted of a set of edge scores, calculated by taking the 

mean of scores submitted by teams for each edge. To ensure edge scores were comparable 

across teams, scores for each team were scaled prior to aggregation so that the maximum 

edge score (across all 32 contexts for the experimental data task) had a value of one.

For the experimental data task, an aggregate prior network was formed in an analogous 

manner to the aggregate submission networks, using 10 prior networks provided by teams 

(the prior network submitted by Team2 was also used by several other teams, but was only 

included once in the aggregation; Supplementary Table 2). Individual prior networks and 

therefore the aggregate prior network were not context-specific.

Principal component analysis (PCA) of context-specific aggregate submission networks

The 32 context-specific aggregate submission networks for the network inference sub-

challenge experimental data task were combined into a matrix E of edge scores where 

columns correspond to contexts and rows correspond to edges (only network nodes common 

to all contexts were considered for this analysis). Each row of matrix E contains the scores 

for a specific edge in each of the contexts. PCA was performed on this matrix using the 

MATLAB function princomp.

Web-based community resource

A community resource has been made available through the Synapse platform at https://

www.synapse.org/HPN_DREAM_Network_Challenge, under the section titled “HPN-

DREAM Community Resource”. This resource includes: all challenge data, participant 

submissions, participant code, participant prior networks and crowdsourced aggregate 

networks. Code for scoring submissions is available as part of the DREAMTools software 

package
47

 (Supplementary Note 11).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Causal networks. The network inference sub-challenge focused on causal relationships 

between nodes. (a) A directed edge (or link) in a causal network carries the interpretation 

that inhibition of the parent node (A) can change abundance of the child node (B) (the 

change could be up or down, here the latter is shown). (b) Causal edges, as used here, may 

represent direct effects or indirect effects that occur via unmeasured intermediate nodes. If 

node A causally influences node B via a measured node C, the causal network should 

contain edges from A to C and C to B, but no edge from A to B (top). However, if node C 

were not measured (and not part of the network), the causal network should contain an edge 

from A to B (bottom). Note that in both these cases inhibition of node A would lead to a 

change in node B. (c) Causal edges may depend on biological context. In the example 
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shown, there is a causal edge from A to B in Context 1, but not in Context 2 (line colors are 

as in a). (d) Correlation and causation. In the example shown, nodes A and B are correlated 

due to regulation by the same node (C). However, in this example no sequence of 

mechanistic events links A to B, and thus inhibition of A does not change the abundance of 

B (line colors are as in a). Therefore, despite the correlation, there is no causal edge from A 

to B.
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Figure 2. 
The HPN-DREAM network inference challenge: overview of experimental data tasks and 

causal assessment strategy. (a) Protein data were obtained from four cancer cell lines under 

eight ligand stimuli (data as described in Hill, Nesser et al.
36

). For each of the 32 resulting 

contexts, participants were provided training data comprising time-courses for ~45 

phosphoproteins under three different kinase inhibitors and a control (DMSO). The sub-

challenge 1 experimental data task (SC1A) asked participants to infer signaling networks 

specific to each context. In SC2A the aim was to predict context-specific molecular time-

courses. In both cases, submissions were assessed using held-out, context-specific test data 
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that were obtained under an unseen intervention (inhibition of the kinase mTOR). Each sub-

challenge also comprised a companion in silico data task (SC1B/SC2B; text, Online 

Methods and Supplementary Fig. 1). (b) Networks submitted to the experimental data task 

(SC1A) were assessed causally in terms of agreement with the interventional test data. For 

each context, the set of nodes that changed under mTOR inhibition was identified (“gold-

standard” causal descendants of mTOR; see text and Online Methods). In the example 

shown, node X is a descendant of mTOR while Y is not. (c) In submitted, context-specific 

networks, predicted descendants of mTOR were identified and compared with their 

experimentally-determined “gold-standard” counterparts. This gave true and false positive 

counts and a (context-specific) AUROC (area under the receiver operating characteristic 

curve). (d) In each context, teams were ranked by AUROC score and mean rank across 

contexts gave the final rankings (Table 1).

Hill et al. Page 26

Nat Methods. Author manuscript; available in PMC 2016 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Network inference sub-challenge (SC1) results. (a) Heatmap showing assessment scores 

(AUROC) in each of the 32 (cell line, stimulus) contexts for the 74 teams that made 

submissions to the experimental data task (teams ordered by final ranking). (b) Scatter plot 

comparing scores in experimental and in silico data tasks. Each square represents a team, 

with color indicating whether prior information was used for the experimental data task and 

red border indicating that a different method was used in each task. Numerical annotation 

indicates ranks for the top ten teams under a combined score (see text; three teams were 
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jointly ranked third under this score). (c,d) Results of crowdsourcing for the experimental 

data task. Aggregate submission networks were formed by combining, for each context, 

networks from top scoring (c) or randomly selected (d) teams (Online Methods). Blue line 

shows performance of the aggregate submission versus number of teams aggregated, with 

red circles depicting individual team scores. Dashed black line indicates the result of 

aggregating all submissions. Results in d are mean values over 100 iterations of random 

selection (error bars indicate s.d.). See Supplementary Figure 8 for analysis of the in silico 
data task. (e,f) Performance by method type for the experimental (e) and in silico (f) data 

tasks. Final rank appears above each bar and the gray line shows mean performance of 

random predictions. Note that some teams used a different approach for each task or only 

participated in a single task (Supplementary Table 2).
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Figure 4. 
Network inference sub-challenge experimental data task (SC1A): role of prior information. 

(a) Tukey-style box plots over mean AUROC scores for teams that did/did not use a prior 

network. P-value calculated by a Wilcoxon rank-sum test (n = 18). (b) An aggregate prior 

network (text and Online Methods) was combined with networks inferred by two top-

performing methods: (i) the “PropheticGranger” approach (top performer in SC1A when 

combined with a network prior) and (ii) the “FunChisq” approach (top performer in SC1B). 

Horizontal axis indicates relative contribution of the aggregate prior (zero indicates no 
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contribution and one indicates aggregate prior alone) and the vertical axis is the score of the 

resulting networks. The blue line indicates performance when combining the aggregate prior 

with randomly generated networks (mean performance over 30 random networks shown, 

with shaded region indicating standard deviation). The dashed black line shows the mean 

AUROC score achieved by the top-performing team in the experimental data task. Error bars 

indicate s.e.m. (c) Top: Tukey-style box plots over AUROC scores for the top 25 performers 

for each context. The green triangles and purple circles indicate performance of the 

aggregate submission and the aggregate prior respectively. Bottom: Receiver operating 

characteristic (ROC) curves for two contexts where a difference in performace was observed 

between the aggregate submission and aggregate prior.
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Figure 5. 
Aggregate submission networks for the network inference experimental data task (SC1A). 

(a) Aggregating all submissions gave a network for each of 32 (cell line, stimulus) contexts; 

the network for cell line MCF7 under HGF stimulus is shown. Line thickness corresponds to 

edge weights (number of edges shown set to equal number of nodes). Black solid (red 

dashed) lines indicate edges that are present (not present) in the aggregate prior network 

(obtained by placing a threshold of 0.1 on edge weights). Green/blue nodes are descendants 

of mTOR in the network shown; green nodes are true positives with respect to the test data 

while blue nodes are false positives (Figs. 2b,c and Supplementary Fig. 2). Network 

generated using Cytoscape
39

. (b) Principal components analysis (PCA) was applied to the 

context-specific aggregate submission networks (Online Methods) with the 32 contexts 
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colored by cell line (PCA was applied to vectors comprising edge scores for the 32 

aggregate networks).
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