49 research outputs found
Concept of Damage Monitoring after Grinding for Components of Variable Hardness
AbstractThis paper deals with nondestructive magnetic evaluation of ground surfaces of chosen material hardness. The properties of prepared surfaces are studied with respect to the progressively worn grinding wheel. The nondestructive testing is based on the Barkhausen noise (BN) technique and obtained BN signals are supplemented by metallographic observations. The results show that the nature of thermal injury of the surfaces prepared by strongly worn grinding wheel significantly depends on the hardness of material. The typical thermal softening induced by grinding cycle is found on the surfaces of hardness 62 HRC whereas samples of lower hardness exhibit rehardening effect associated with the formation of white layer. These material changes are strongly correlated with the BN properties
Search for shower's duplicates at the IAU MDC. Methods and general results
Observers submit both new and known meteor shower parameters to the database
of the IAU Meteor Data Center (MDC). It may happen that a new observation of an
already known meteor shower is submitted as a discovery of a new shower. Then,
a duplicate shower appears in the MDC. On the other hand, the observers may
provide data which, in their opinion, is another set of parameters of an
already existing shower. However, if this is not true, we can talk about a
shower that is a false-duplicate of a known meteor shower.
We aim to develop a method for objective detection of duplicates among meteor
showers and apply it to the MDC. The method will also enable us to verify
whether various sets of parameters of the same shower are compatible and, thus,
reveal the false-duplicates. We suggest two methods based on cluster analyses
and two similarity functions among geocentric and heliocentric shower
parameters collected in the MDC. 8 new showers represented by two or more
parameter sets were discovered. 31 times there was full agreement between our
results and those reported in the MDC. 23 times the same duplicates as given in
the MDC, were found only by one method. We found 27 multi-solution showers for
which the number of the same duplicates found by both method is close to the
corresponding number in the MDC database. However for 60 multi-solution showers
listed in the MDC no duplicates were found by any of the applied methods.
The obtained results confirmed the effectiveness of the proposed approach of
identifying duplicates. We have shown that in order to detect and verify
duplicate meteor showers, it is possible to apply the objective proposal
instead of the subjective approach used so far
Showers with both northern and southern solutions
Meteoroids of a low-inclination stream hit the Earth arriving from a
direction near the ecliptic. The radiant area of stream like this is often
divided into two parts: one is situated northward and the other southward of
the ecliptic. In other words, two showers are caused by such a stream.
Well-known examples of such showers are the Northern Taurids, #17, and Southern
Taurids, #2, or the Northern -Aquariids, #26, and Southern
-Aquariids, #5. While the meteoroids of the northern shower collide
with the Earth in the descending node, those of the southern shower collide
with our planet in the ascending node of their orbits. Because of this
circumstance and tradition, the northern and southern showers must be
distinguished. Unfortunately, this is not always the case with meteor showers
listed in the IAU Meteor Data Center (MDC). For the same shower, some authors
reported a set of its mean parameters corresponding to the northern shower and
other authors to the southern shower. We found eleven such cases in the MDC. In
this paper, we propose corrections of these mis-identifications.Comment: Submitted: Planetary and Space Scienc
Barkhausen noise emission of AISI 304 stainless steel originating from strain induced martensite by shot peening
This study deals with magnetic Barkhausen noise emission produced by strain-induced martensite generated during shot peening of austenitic AISI 304 stainless steel. The transformation from the paramagnetic to ferromagnetic state and the corresponding birth of the magnetic domain structure are important with respect to irreversible motion of domain walls and the corresponding Barkhausen noise emission. Barkhausen noise is investigated and explained with respect to the residual stress state as well as the micro-structure expressed in terms of the martensite fraction, its crystallite size, preferred orientation, surface topography, and microhardness. The strength of the Barkhausen noise is mainly linked with the number of shot peening cycles, corresponding Almen intensity, and the associated volume fraction of strain-induced martensite as well as the extent of its depth. The role of the residual stress state in the martensite phase is minor. Surface strengthening expressed in terms of the microhardness in the near-surface region is very high for the medium shot peening intensity. A remarkable decrease in the near-surface microhardness as well as the presence of heavily thinned folds indicate over shot peen-ing and surface microcracking in the case of a longer shot peening time and the corre-sponding higher Almen intensity.Web of Science2076274
Considerations on the accretion of Uranus and Neptune by mutual collisions of planetary embryos in the vicinity of Jupiter and Saturn
Modeling the formation of the ice giants Uranus and Neptune is a long-lasting
problem in planetary science. Due to gas-drag, collisional damping, and
resonant shepherding, the planetary embryos repel the planetesimals away from
their reach and thus they stop growing (Levison et al. 2010). This problem
persists independently of whether the accretion took place at the current
locations of the ice giants or closer to the Sun. Instead of trying to push the
runaway/oligarchic growth of planetary embryos up to 10-15 Earth masses, we
envision the possibility that the planetesimal disk could generate a system of
planetary embryos of only 1-3 Earth masses. Then we investigate whether these
embryos could have collided with each other and grown enough to reach the
masses of current Uranus and Neptune. Our results point to two major problems.
First, there is typically a large difference in mass between the first and the
second most massive core formed and retained beyond Saturn. Second, in many
simulations the final planetary system has more than two objects beyond Saturn.
The growth of a major planet from a system of embryos requires strong damping
of eccentricities and inclinations from the disk of gas. But strong damping
also favors embryos and cores to find a stable resonant configuration, so that
systems with more than two surviving objects are found. In addition to these
problems, in order to have substantial mutual accretion among embryos, it is
necessary to assume that the surface density of the gas was several times
higher than that of the minimum-mass solar nebula. However this contrasts with
the common idea that Uranus and Neptune formed in a gas-starving disk, which is
suggested by the relatively small amount of hydrogen and helium contained in
the atmospheres of these planets. Only one of our simulations "by chance"
successfully reproduced the structure of the outer Solar System.Comment: 16 pages; 15 color figures; accepted in Astronomy & Astrophysics;
shortened abstrac
Constraining the electric charges of some astronomical bodies in Reissner-Nordstrom spacetimes and generic r^-2-type power-law potentials from orbital motions
We put model-independent, dynamical constraints on the net electric charge Q
of some astronomical and astrophysical objects by assuming that their exterior
spacetimes are described by the Reissner-Nordstroem metric, which induces an
additional potential U_RN \propto Q^2 r^-2. Our results extend to other
hypothetical power-law interactions inducing extra-potentials U_pert = r^-2 as
well (abridged).Comment: LaTex2e, 16 pages, 3 figures, no tables, 128 references. Version
matching the one at press in General Relativity and Gravitation (GRG). arXiv
admin note: substantial text overlap with arXiv:1112.351
Extrasolar enigmas: from disintegrating exoplanets to exoasteroids
Thousands of transiting exoplanets have been discovered to date, thanks in
great part to the {\em Kepler} space mission. As in all populations, and
certainly in the case of exoplanets, one finds unique objects with distinct
characteristics. Here we will describe the properties and behaviour of a small
group of `disintegrating' exoplanets discovered over the last few years (KIC
12557548b, K2-22b, and others). They evaporate, lose mass unraveling their
naked cores, produce spectacular dusty comet-like tails, and feature highly
variable asymmetric transits. Apart from these exoplanets, there is
observational evidence for even smaller `exo-'objects orbiting other stars:
exoasteroids and exocomets. Most probably, such objects are also behind the
mystery of Boyajian's star. Ongoing and upcoming space missions such as {\em
TESS} and PLATO will hopefully discover more objects of this kind, and a new
era of the exploration of small extrasolar systems bodies will be upon us.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern
Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka;
publisher Springer Nature) funded by the European Union Erasmus+ Strategic
Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556