22 research outputs found

    Investigating the individual and combined effects of coenzyme Q10 and vitamin C on CLP-induced cardiac injury in rats

    No full text
    Abstract Sepsis-induced cardiac injury represents a major clinical challenge, amplifying the urgency for effective therapeutic interventions. This study aimed to delve into the individual and combined prophylactic effects of Vitamin C (Vit C) and Coenzyme Q10 (CoQ10) against inflammatory heart injury in a cecal ligation and puncture (CLP) induced polymicrobial sepsis rat model. Thirty adult female Sprague–Dawley rats were randomly divided into five groups: Control, CLP, Vitamin C, CoQ10, and Vit C + CoQ10, each consisting of six rats. Treatments were administered orally via gavage for 10 days prior to the operation. Eighteen hours post-sepsis induction, the animals were euthanized, and specimens were collected for analysis. The study examined variations in oxidative (TOS, OSI, MDA, MPO) and antioxidative markers (TAS, SOD, CAT, GSH), histopathological changes, inflammatory cytokine concentrations (TNF-α, IL-1β), nitric oxide (NO) dynamics, and cardiac indicators such as CK-MB. Impressively, the combined regimen markedly diminished oxidative stress, and antioxidative parameters reflected notable enhancements. Elevated NO levels, a central player in sepsis-driven inflammatory cascades, were effectively tempered by our intervention. Histological examinations corroborated the biochemical data, revealing diminished cardiac tissue damage in treated subjects. Furthermore, a marked suppression in pro-inflammatory cytokines was discerned, solidifying the therapeutic potential of our intervention. Interestingly, in certain evaluations, CoQ10 exhibited superior benefits over Vit C. Collectively, these findings underscore the potential therapeutic promise of Vit C and CoQ10 combination against septic cardiac injuries in rats

    Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species

    No full text
    PubMed ID: 29246190Background: Drought is a lifestyle disease. Plant metabolomics has been exercised for understanding the fine-tuning of the potential pathways to surmount the adverse effects of drought stress. A broad spectrum of morphological and metabolic responses from seven Triticeae species including wild types with different drought tolerance/susceptibility level was investigated under control and water scarcity conditions. Results: Significant morphological parameters measured were root length, surface area, average root diameter and overall root development. Principal Component Analysis, Partial Least-Squares-Discriminant Analysis and Hierarchical Cluster Analysis were applied to the metabolomic data obtained by Gas Chromatography-Mass Spectrometry technique in order to determine the important metabolites of the drought tolerance across seven different Triticeae species. The metabolites showing significant accumulation under the drought stress were considered as the key metabolites and correlated with potential biochemical pathways, enzymes or gene locations for a better understanding of the tolerance mechanisms. In all tested species, 45 significantly active metabolites with possible roles in drought stress were identified. Twenty-one metabolites out of forty-five including sugars, amino acids, organic acids and low molecular weight compounds increased in both leaf and root samples of TR39477, IG132864 and Bolal under the drought stress, contrasting to TTD-22, Tosunbey, Ligustica and Meyeri samples. Three metabolites including succinate, aspartate and trehalose were selected for further genome analysis due to their increased levels in TR39477, IG132864, and Bolal upon drought stress treatment as well as their significant role in energy producing biochemical pathways. Conclusion: These results demonstrated that the genotypes with high drought tolerance skills, especially wild emmer wheat, have a great potential to be a genetic model system for experiments aiming to validate metabolomics-genomics networks. © 2017 The Author(s).This research was funded by Sabanci University and Winifred-Asbjornson Plant Science Endowment

    Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species

    No full text
    Background: Drought is a lifestyle disease. Plant metabolomics has been exercised for understanding the fine-tuning of the potential pathways to surmount the adverse effects of drought stress. A broad spectrum of morphological and metabolic responses from seven Triticeae species including wild types with different drought tolerance/susceptibility level was investigated under control and water scarcity conditions. Results: Significant morphological parameters measured were root length, surface area, average root diameter and overall root development. Principal Component Analysis, Partial Least-Squares-Discriminant Analysis and Hierarchical Cluster Analysis were applied to the metabolomic data obtained by Gas Chromatography-Mass Spectrometry technique in order to determine the important metabolites of the drought tolerance across seven different Triticeae species. The metabolites showing significant accumulation under the drought stress were considered as the key metabolites and correlated with potential biochemical pathways, enzymes or gene locations for a better understanding of the tolerance mechanisms. In all tested species, 45 significantly active metabolites with possible roles in drought stress were identified. Twenty-one metabolites out of forty-five including sugars, amino acids, organic acids and low molecular weight compounds increased in both leaf and root samples of TR39477, IG132864 and Bolal under the drought stress, contrasting to TTD-22, Tosunbey, Ligustica and Meyeri samples. Three metabolites including succinate, aspartate and trehalose were selected for further genome analysis due to their increased levels in TR39477, IG132864, and Bolal upon drought stress treatment as well as their significant role in energy producing biochemical pathways. Conclusion: These results demonstrated that the genotypes with high drought tolerance skills, especially wild emmer wheat, have a great potential to be a genetic model system for experiments aiming to validate metabolomics-genomics networks

    Serum BDNF and Selenium Levels in Elite Athletes Exposed to Blows

    No full text
    Background and Objectives: The study aimed to investigate the combined acute and long-term effects of exposure to blows and exercise on serum BDNF (brain-derived neurotrophic factor) and selenium levels. Materials and Methods: Serum BDNF and selenium levels were determined in 40 male elite athletes before and after vigorous exercise (training match) with a probability of exposure to blows and in 10 sedentary men subjected to exercise (Astrand running protocol). Results: Serum BDNF levels were found 11.50 ± 3.50 ng/mL before exercise and 14.02 ± 3.15 ng/mL after exercise in the athlete group (p = 0.02), and 12.18 ± 4.55 ng/ mL and 11.74 ± 2.48 ng/ mL before and after exercise in the sedentary group, respectively (p = 0.873). Serum BDNF (pre-exercise, baseline) levels were slightly lower in the athlete group than those in the sedentary group (11.50 ± 3.50 and 12.18 ± 4.55 ng/mL, respectively, p = 0.796). Pre-exercise serum selenium levels in athletes were significantly higher compared to those of sedentary participants (130.53 ± 36.79 and 95.51 ± 20.57 µg/L, respectively, p = 0.011). There was no difference in selenium levels after exercise (124.01 ± 29.96 µg/L) compared to pre-exercise (130.53 ± 36.79 µg/L) in the athlete group (p = 0.386). Similarly, there was no difference in selenium levels after exercise (113.28 ± 25.51 µg/L) compared to pre-exercise (95.51 ± 20.57 µg/L) in the sedentary group (p = 0.251). Conclusions: BDNF results show that even if athletes are exposed to blows, they may be protected from the long-term effects of blows thanks to the protective effect of their non-sedentary lifestyle. Regular exercise may have a protective effect on maintaining serum selenium levels in athletes even exposed to blows chronically

    Additional file 1: Figure S1. of Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species

    No full text
    Root morphology of a normal and drought-stressed Triticum aestivum (Bolal). Normal conditions (a), drought stress condition (b), light Microscopy (10X) images of lateral root length (c) and diameter (d), normal primary root diameter of 19.17 µm (e), drought stress primary & secondary root diameters of 13.8 µm (f). Figure S2. GC-MS spectra for a typical control leave sample (lower pannel) and drought-treated leave sample (upper pannel). Aegilops speltoides (A) Triticum dicoccoides (TR39477) (B) Triticum dicoccoides (TTD-22) (C) and Triticum aestivum (Bolal) (D). Figure S3. GC-MS spectra for a typical control leave sample (lower pannel) and drought-treated leave sample (upper pannel). Triticum aestivum (Tosunbey) (E), Triticum monococcum (F) and Aegilops tauschii (G). Complete chromatographic time was 5.0-40.0 min. Figure S4. GC-MS spectra for a typical control root sample (lower pannel) and drought-treated root sample (upper pannel). Aegilops speltoides (A), Triticum dicoccoides (TR39477) (B), Triticum dicoccoides (TTD-22) (C) and Triticum aestivum (Bolal) (D). Figure S5. GC-MS spectra for a typical control root sample (lower pannel) and drought-treated root sample (upper pannel). Triticum aestivum (Tosunbey) (E), Triticum monococcum (F) and Aegilops tauschii (G). Table S1. Stress responsive metabolites identified in leaf samples. Leaf metabolites, the fold changesx in the concentrations of each metabolite between control (CL) and drought-stressed (DSL) groups using the formula log2(Drought treated/Control) and variable importance in the projection (VIP) of the typical/representative sample (TR39477). Table S2. Water-stress responsive metabolites identified in root. Root metabolites, the fold changesx in the concentrations of each metabolite between control (CR) and drought-stressed (DSR) groups using the formula log2(Drought treated/Control) and variable importance in the projection (VIP) of the typical/representative sample (TR39477). Table S3. Principal Component Analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) results. The explanation and predictability values measured for the first two Principal Components (PCs) were found 71.2% and 42.6%, respectively. Table S4. The KEGG pathways (R-software) of the altered metabolites exposure to drought stress in wheat leaves and root samples. (DOCX 1930 kb

    Does Single or Combined Caffeine and Taurine Supplementation Improve Athletic and Cognitive Performance without Affecting Fatigue Level in Elite Boxers? A Double-Blind, Placebo-Controlled Study

    No full text
    In previous studies, the effect of single or combined intake of caffeine (CAF) and taurine (TAU) on exercise performance was investigated. However, the potential synergistic effect on physical and cognitive performance after fatigue induced by anaerobic exercise is unknown. The effects of single and combination CAF and TAU supplementation on the Wingate test in elite male boxers and to evaluate balance, agility and cognitive performance after fatigue are being investigated for the first time in this study. Twenty elite male boxers 22.14 ± 1.42 years old were divided into four groups in this double-blind, randomized crossover study: CAF (6 mg/kg of caffeine), TAU (3 g single dose of taurine), CAF*TAU (co-ingestion of 3 g single dose of taurine and 6 mg/kg of caffeine) and PLA (300 mg maltodextrin). The findings are as follows: co-ingestion of CAF*TAU, improved peak (W/kg), average (W), minimum (W) power, time to reach (s), and RPE performances compared to the PLA group significantly (p p p < 0.05) compared to the PLA group. In terms of cognitive performance, co-ingestion of CAF*TAU significantly improved the neutral reaction time (ms) compared to the TAU, CAF and PLA groups. As a result, elite male boxers performed better in terms of agility, balance and cognitive function when they consumed a combination of 6 mg/kg CAF and 3 g TAU. It has been determined that the combined use of these supplements is more effective than their single use
    corecore