63 research outputs found
Cosmoglobe DR1. III. First full-sky model of polarized synchrotron emission from all WMAP and Planck LFI data
We present the first model of full-sky polarized synchrotron emission that is
derived from all WMAP and Planck LFI frequency maps. The basis of this analysis
is the set of end-to-end reprocessed Cosmoglobe Data Release 1 sky maps
presented in a companion paper, which have significantly lower instrumental
systematics than the legacy products from each experiment. We find that the
resulting polarized synchrotron amplitude map has an average noise rms of
at 30 GHz and FWHM, which is 30% lower than
the recently released BeyondPlanck model that included only LFI+WMAP Ka-V data,
and 29% lower than the WMAP K-band map alone. The mean -to- power
spectrum ratio is , with amplitudes consistent with those measured
previously by Planck and QUIJOTE. Assuming a power law model for the
synchrotron spectral energy distribution, and using the -- plot method,
we find a full-sky inverse noise-variance weighted mean of
between Cosmoglobe DR1 K-band and 30 GHz, in
good agreement with previous estimates. In summary, the novel Cosmoglobe DR1
synchrotron model is both more sensitive and systematically cleaner than
similar previous models, and it has a more complete error description that is
defined by a set of Monte Carlo posterior samples. We believe that these
products are preferable over previous Planck and WMAP products for all
synchrotron-related scientific applications, including simulation, forecasting
and component separation.Comment: 15 pages, 15 figures, submitted to A&
Cosmoglobe: Towards end-to-end CMB cosmological parameter estimation without likelihood approximations
We implement support for a cosmological parameter estimation algorithm as
proposed by Racine et al. (2016) in Commander, and quantify its computational
efficiency and cost. For a semi-realistic simulation similar to Planck LFI 70
GHz, we find that the computational cost of producing one single sample is
about 60 CPU-hours and that the typical Markov chain correlation length is
100 samples. The net effective cost per independent sample is 6 000
CPU-hours, in comparison with all low-level processing costs of 812 CPU-hours
for Planck LFI and WMAP in Cosmoglobe Data Release 1. Thus, although
technically possible to run already in its current state, future work should
aim to reduce the effective cost per independent sample by at least one order
of magnitude to avoid excessive runtimes, for instance through multi-grid
preconditioners and/or derivative-based Markov chain sampling schemes. This
work demonstrates the computational feasibility of true Bayesian cosmological
parameter estimation with end-to-end error propagation for high-precision CMB
experiments without likelihood approximations, but it also highlights the need
for additional optimizations before it is ready for full production-level
analysis.Comment: 10 pages, 8 figures. Submitted to A&
Cosmoglobe DR1 results. II. Constraints on isotropic cosmic birefringence from reprocessed WMAP and Planck LFI data
Cosmic birefringence is a parity-violating effect that might have rotated the
plane of linearly polarized light of the cosmic microwave background (CMB) by
an angle since its emission. This has recently been measured to be
non-zero at a statistical significance of in the official Planck
PR4 and 9-year WMAP data. In this work, we constrain using the
reprocessed BeyondPlanck LFI and Cosmoglobe DR1 WMAP polarization maps. These
novel maps have both lower systematic residuals and a more complete error
description than the corresponding official products. Foreground
correlations could bias measurements of , and while thermal dust
emission has been argued to be statistically non-zero, no evidence for
synchrotron power has been reported. Unlike the dust-dominated Planck HFI
maps, the majority of the LFI and WMAP polarization maps are instead dominated
by synchrotron emission. Simultaneously constraining and the
polarization miscalibration angle, , of each channel, we find a
best-fit value of with LFI and WMAP data
only. When including the Planck HFI PR4 maps, but fitting separately
for dust-dominated, , and synchrotron-dominated
channels, , we find . This differs from zero with a
statistical significance of , and the main contribution to this
value comes from the LFI 70 GHz channel. While the statistical significances of
these results are low on their own, the measurement derived from the LFI and
WMAP synchrotron-dominated maps agrees with the previously reported
HFI-dominated constraints, despite the very different astrophysical and
instrumental systematics involved in all these experiments.Comment: 10 pages, 7 figures, 2 tables. Submitted to A&
Cosmoglobe DR1 results. I. Improved Wilkinson Microwave Anisotropy Probe maps through Bayesian end-to-end analysis
We present Cosmoglobe Data Release 1, which implements the first joint
analysis of WMAP and Planck LFI time-ordered data, processed within a single
Bayesian end-to-end framework. This framework builds directly on a similar
analysis of the LFI measurements by the BeyondPlanck collaboration, and
approaches the CMB analysis challenge through Gibbs sampling of a global
posterior distribution, simultaneously accounting for calibration, mapmaking,
and component separation. The computational cost of producing one complete
WMAP+LFI Gibbs sample is 812 CPU-hr, of which 603 CPU-hrs are spent on WMAP
low-level processing; this demonstrates that end-to-end Bayesian analysis of
the WMAP data is computationally feasible. We find that our WMAP posterior mean
temperature sky maps and CMB temperature power spectrum are largely consistent
with the official WMAP9 results. Perhaps the most notable difference is that
our CMB dipole amplitude is , which is $11\
\mathrm{\mu K}2.5\ {\sigma}$ higher than
BeyondPlanck; however, it is in perfect agreement with the HFI-dominated Planck
PR4 result. In contrast, our WMAP polarization maps differ more notably from
the WMAP9 results, and in general exhibit significantly lower large-scale
residuals. We attribute this to a better constrained gain and transmission
imbalance model. It is particularly noteworthy that the W-band polarization sky
map, which was excluded from the official WMAP cosmological analysis, for the
first time appears visually consistent with the V-band sky map. Similarly, the
long standing discrepancy between the WMAP K-band and LFI 30 GHz maps is
finally resolved, and the difference between the two maps appears consistent
with instrumental noise at high Galactic latitudes. All maps and the associated
code are made publicly available through the Cosmoglobe web page.Comment: 65 pages, 61 figures. Data available at cosmoglobe.uio.no. Submitted
to A&
Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
LiteBIRD has been selected as JAXAâs strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34â161 GHz), one of LiteBIRDâs onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90⊠are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented
Overview of the medium and high frequency telescopes of the LiteBIRD space mission
LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD
LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 ΌK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes
Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
Abstract: Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXAâs H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxyâs foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second SunâEarth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2
Cosmoglobe DR1 results. II. Constraints on isotropic cosmic birefringence from reprocessed WMAP and Planck LFI data
International audienceCosmic birefringence is a parity-violating effect that might have rotated the plane of linearly polarized light of the cosmic microwave background (CMB) by an angle since its emission. This has recently been measured to be non-zero at a statistical significance of in the official Planck PR4 and 9-year WMAP data. In this work, we constrain using the reprocessed BeyondPlanck LFI and Cosmoglobe DR1 WMAP polarization maps. These novel maps have both lower systematic residuals and a more complete error description than the corresponding official products. Foreground correlations could bias measurements of , and while thermal dust emission has been argued to be statistically non-zero, no evidence for synchrotron power has been reported. Unlike the dust-dominated Planck HFI maps, the majority of the LFI and WMAP polarization maps are instead dominated by synchrotron emission. Simultaneously constraining and the polarization miscalibration angle, , of each channel, we find a best-fit value of with LFI and WMAP data only. When including the Planck HFI PR4 maps, but fitting separately for dust-dominated, , and synchrotron-dominated channels, , we find . This differs from zero with a statistical significance of , and the main contribution to this value comes from the LFI 70 GHz channel. While the statistical significances of these results are low on their own, the measurement derived from the LFI and WMAP synchrotron-dominated maps agrees with the previously reported HFI-dominated constraints, despite the very different astrophysical and instrumental systematics involved in all these experiments
- âŠ