11 research outputs found

    Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children

    No full text
    Objectives To assess iodine and iron nutritional status among Nepalese school children. Methods A cross-sectional, community based study was conducted in the two districts, Ilam (hilly region) and Udayapur (plain region) of eastern Nepal. A total of 759 school children aged 6–13 y from different schools within the study areas were randomly enrolled. A total of 759 urine samples and 316 blood samples were collected. Blood hemoglobin level, serum iron, total iron binding capacity and urinary iodine concentration was measured. Percentage of transferrin saturation was calculated using serum iron and total iron binding capacity values. Results The mean level of hemoglobin, serum iron, total iron binding capacity, transferrin saturation and median urinary iodine excretion were 12.29 ± 1.85 g/dl, 70.45 ± 34.46 μg/dl, 386.48 ± 62.48 μg/dl, 19.94 ± 12.07 % and 274.67 μg/L respectively. Anemia, iron deficiency and iodine deficiency (urinary iodine excretion <100 μg/L) were present in 34.5 %, 43.4 % and 12.6 % children respectively. Insufficient urinary iodine excretion (urinary iodine excretion <100 μg/L) was common in anemic and iron deficient children. Conclusions Iron deficiency and anemia are common in Nepalese children, whereas, iodine nutrition is more than adequate. Low urinary iodine excretion was common in iron deficiency and anemia

    Effect of Delay Separation and Short Term Storage of Serum on Thyroid Stimulating Hormone (TSH)

    No full text
    Introduction: Thyroid stimulating hormone (TSH) regulates the level of thyroid hormones synthesized in the thyroid gland. Its measurement greatly facilitates the clinical diagnosis as well as management of pituitary-thyroid diseases. The level of analytes in biological sample is affected by pre-analytical, analytical and post-analytical factors.Objective: To find the effect of delay separation and short term storage on serum TSH level.Materials and Methods: A total of 15 blood samples were collected from the patients visited to the immunoassay laboratory, Department of Biochemistry, BPKIHS for thyroid function test. Serum TSH was estimated on the day of sample collection, after 24 hours in delay separated samples and after seven days in short-term stored sample by sandwich ELISA method (Eliscan, India).Results: There were no significant difference in median serum TSH in baseline and delay separated samples (1.43 (0.18-6.52) IU/mL, vs 1.61 (0.25-6.51) IU/mL, p = 0.069) as well as baseline and short term stored samples 1.43 (0.18-6.52) IU/mL vs 1.57 (0.26-5.75), p = 0.925).</p

    Mechanical loading modulates phosphate related genes in rat bone.

    No full text
    Mechanical loading determines bone mass and bone structure, which involves many biochemical signal molecules. Of these molecules, Mepe and Fgf23 are involved in bone mineralization and phosphate homeostasis. Thus, we aimed to explore whether mechanical loading of bone affects factors of phosphate homeostasis. We studied the effect of mechanical loading of bone on the expression of Fgf23, Mepe, Dmp1, Phex, Cyp27b1, and Vdr. Twelve-week old female rats received a 4-point bending load on the right tibia, whereas control rats were not loaded. RT-qPCR was performed on tibia mRNA at 4, 5, 6, 7 or 8 hours after mechanical loading for detection of Mepe, Dmp1, Fgf23, Phex, Cyp27b1, and Vdr. Immunohistochemistry was performed to visualise FGF23 protein in tibiae. Serum FGF23, phosphate and calcium levels were measured in all rats. Four-point bending resulted in a reduction of tibia Fgf23 gene expression by 64% (p = 0.002) and a reduction of serum FGF23 by 30% (p<0.001), six hours after loading. Eight hours after loading, Dmp1 and Mepe gene expression increased by 151% (p = 0.007) and 100% (p = 0.007). Mechanical loading did not change Phex, Cyp27b1, and Vdr gene expression at any time-point. We conclude that mechanical loading appears to provoke both a paracrine as well as an endocrine response in bone by modulating factors that regulate bone mineralization and phosphate homeostasis

    Mechanical loading modulates phosphate related genes in rat bone

    No full text
    Mechanical loading determines bone mass and bone structure, which involves many biochemical signal molecules. Of these molecules, Mepe and Fgf23 are involved in bone mineralization and phosphate homeostasis. Thus, we aimed to explore whether mechanical loading of bone affects factors of phosphate homeostasis. We studied the effect of mechanical loading of bone on the expression of Fgf23, Mepe, Dmp1, Phex, Cyp27b1, and Vdr. Twelve-week old female rats received a 4-point bending load on the right tibia, whereas control rats were not loaded. RT-qPCR was performed on tibia mRNA at 4, 5, 6, 7 or 8 hours after mechanical loading for detection of Mepe, Dmp1, Fgf23, Phex, Cyp27b1, and Vdr. Immunohistochemistry was performed to visualise FGF23 protein in tibiae. Serum FGF23, phosphate and calcium levels were measured in all rats. Four-point bending resulted in a reduction of tibia Fgf23 gene expression by 64% (p = 0.002) and a reduction of serum FGF23 by 30% (p<0.001), six hours after loading. Eight hours after loading, Dmp1 and Mepe gene expression increased by 151% (p = 0.007) and 100% (p = 0.007). Mechanical loading did not change Phex, Cyp27b1, and Vdr gene expression at any time-point. We conclude that mechanical loading appears to provoke both a paracrine as well as an endocrine response in bone by modulating factors that regulate bone mineralization and phosphate homeostasis

    Methodological aspects of in vivo axial loading in rodents: a systematic review

    No full text
    Axial loading in rodents provides a controlled setting for mechanical loading, because load and subsequent strain, frequency, number of cycles and rest insertion between cycles, are precisely defined. These methodological aspects as well as factors, such as ovariectomy, aging, and disuse may affect the outcome of the loading test, including bone mass, structure, and bone mineral density. This review aims to overview methodological aspects and modifying factors in axial loading on bone outcomes. A systematic literature search was performed in bibliographic databases until December 2021, which resulted in 2183 articles. A total of 144 articles were selected for this review: 23 rat studies, 74 mouse studies, and 47 knock out (KO) mouse studies. Results indicated that peak load, frequency, and number of loading cycles mainly affected the outcomes of bone mass, structure, and density in both rat and mouse studies. It is crucial to consider methodological parameters and modifying factors such as age, sex-steroid deficiency, and disuse in loading protocols for the prediction of loading-related bone outcomes

    Mechanical stress regulates bone regulatory gene expression independent of estrogen and vitamin D deficiency in rats

    No full text
    Mechanical stress determines bone mass and structure. It is not known whether mechanical loading affects expression of bone regulatory genes in a combined deficiency of estrogen and vitamin D. We studied the effect of mechanical loading on the messenger RNA (mRNA) expression of bone regulatory genes during vitamin D and/or estrogen deficiency. We performed a single bout in vivo axial loading with 14 N peak load, 2 Hz frequency and 360 cycles in right ulnae of nineteen weeks old female control Wistar rats with or without ovariectomy (OVX), vitamin D deficiency and the combination of OVX and vitamin D deficiency (N = 10/group). Total bone RNA was isolated 6 hours after loading, and mRNA expression was detected of Mepe, Fgf23, Dmp1, Phex, Sost, Col1a1, Cyp27b1, Vdr, and Esr1. Serum levels of 25(OH)D, 1,25(OH)2 D and estradiol were also measured at this time point. The effect of loading, vitamin D and estrogen deficiency and their interaction on bone gene expression was tested using a mixed effect model analysis. Mechanical loading significantly increased the mRNA expression of Mepe, and Sost, whereas it decreased the mRNA expression of Fgf23 and Esr1. Mechanical loading showed a significant interaction with vitamin D deficiency with regard to mRNA expression of Vdr and Esr1. Mechanical loading affected gene expression of Mepe, Fgf23, Sost, and Esr1 independently of vitamin D or estrogen, indicating that mechanical loading may affect bone turnover even during vitamin D deficiency and after menopause.status: publishe

    Dried Blood Spot Thyroglobulin as a Biomarker of Iodine Status in Pregnant Women

    No full text
    DBS-Tg is a sensitive biomarker of iodine status in PW, the reference range in iodine sufficient PW is 0.3-43.5 μg/L and a median DBS-Tg <10 μg/L indicates iodine sufficiency in PW
    corecore