22 research outputs found
Revisiting the Tag Relevance Prediction Problem
Traditionally, recommender systems provide a list of suggestions to a user based on past interactions with items of this user. These recommendations are usually based on user preferences for items and generated with a delay. Critiquing recommender systems allow users to provide immediate feedback to recommendations with tags and receive a new set of recommendations in response. However, these systems often require rich item descriptions that contain relevance scores indicating the strength, with which a tag applies to an item. For example, this relevance score could indicate how violent the movie "The Godfather" is on a scale from 0 to 1. Retrieving these data is a very demanding process, as it requires users to explicitly indicate the degree to which a tag applies to an item. This process can be improved with machine learning methods that predict tag relevance. In this paper, we explore the dataset from a different study, where the authors collected relevance scores on movie-tag pairs. In particular, we define the tag relevance prediction problem, explore the inconsistency of relevance scores provided by users as a challenge of this problem and present a method, which outperforms the state-of-the-art method for predicting tag relevance. We found a moderate inconsistency of user relevance scores. We also found that users tend to disagree more on subjective tags, such as "good acting", "bad plot" or "quotable" than on objective tags, such as "animation", "cars" or "wedding", but the disagreement of users regarding objective tags is also moderate.Peer reviewe
Towards quantifiable boundaries for elastic horizontal scaling of microservices
One of the most useful features of a microservices architecture is its versatility to scale horizontally. However, not all services scale in or out uniformly. The performance of an application composed of microservices depends largely on a suitable combination of replica count and resource capacity. In practice, this implies limitations to the efficiency of autoscalers which often overscale based on an isolated consideration of single service metrics. Consequently, application providers pay more than necessary despite zero gain in overall performance. Solving this issue requires an application-specific determination of scaling limits due to the general infeasibility of an application-agnostic solution. In this paper, we study microservices scalability, the auto-scaling of containers as microservice implementations and the relation between the number of replicas and the resulting application task performance. We contribute a replica count determination solution with a mathematical approach. Furthermore, we offer a calibration software tool which places scalability boundaries into declarative composition descriptions of applications ready to be consumed by cloud platforms
A design framework for wireless sensor networks
Wireless sensor networks (sensornets) are wirelessly communicating smart gadgets with the capability of sensing the environment.
With the immense applicability of sensornets, there is an increasing need of a general organisational and architectural development framework for sensornet systems. This paper outlines an abstract framework for modelling responsibilities and tasks to sets of nodes according to their vocation. These guidelines are presented with the intension to ease reasoning about a sensornet as a system, and its applications.1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en InformĂĄtica (RedUNCI
The Tag Genome Dataset for Books
Attaching tags to items, such as books or movies, is found in many online systems. While a majority of these systems use binary tags, continuous item-tag relevance scores, such as those in tag genome, offer richer descriptions of item content. For example, tag genome for movies assigns the tag "gangster" to the movie "The Godfather (1972)" with a score of 0.93 on a scale of 0 to 1. Tag genome has received considerable attention in recommender systems research and has been used in a wide variety of studies, from investigating the effects of recommender systems on users to generating ideas for movies that appeal to certain user groups.In this paper, we present tag genome for books, a dataset containing book-tag relevance scores, where a significant number of tags overlap with those from tag genome for movies. To generate our dataset, we designed a survey based on popular books and tags from the Goodreads dataset. In our survey, we asked users to provide ratings for how well tags applied to books. We generated book-tag relevance scores based on user ratings along with features from the Goodreads dataset. In addition to being used to create book recommender systems, tag genome for books can be combined with the tag genome for movies to tackle cross-domain problems, such as recommending books based on movie preferences.Peer reviewe
Rating consistency is consistently underrated : An exploratory analysis of movie-tag rating inconsistency
Publisher Copyright: © 2022 ACM.Content-based and hybrid recommender systems rely on item-tag ratings to make recommendations. An example of an item-tag rating is the degree to which the tag "comedy"applies to the movie "Back to the Future (1985)". Ratings are often generated by human annotators who can be inconsistent with one another. However, many recommender systems take item-tag ratings at face value, assuming them all to be equally valid. In this paper, we investigate the inconsistency of item-tag ratings together with contextual factors that could affect consistency in the movie domain. We conducted semi-structured interviews to identify potential reasons for rating inconsistency. Next, we used these reasons to design a survey, which we ran on Amazon Mechanical Turk. We collected 6,070 ratings from 665 annotators across 142 movies and 80 tags. Our analysis shows that âŒ45% of ratings are inconsistent with the mode rating for a given movie-tag pair. We found that the single most important factor for rating inconsistency is the annotator's perceived ease of rating, suggesting that annotators are at least tacitly aware of the quality of their own ratings. We also found that subjective tags (e.g. "funny", "boring") are more inconsistent than objective tags (e.g. "robots", "aliens"), and are associated with lower tag familiarity and lower perceived ease of rating.Peer reviewe
Trustworthy context dependency in ubiquitous systems
The modern society is getting increasingly dependent on software applications.
These run on processors, use memory and account for controlling functionalities
that are often taken for granted. Typically, applications adjust the functionality
in response to a certain context that is provided or derived from the informal
environment with various qualities. To rigorously model the dependence of an
application on a context, the details of the context are abstracted and the
environment is assumed stable and fixed. However, in a context-aware
ubiquitous computing environment populated by autonomous agents, a context
and its quality parameters may change at any time. This raises the need to derive
the current context and its qualities at runtime. It also implies that a context is
never certain and may be subjective, issues captured by the contextâs quality
parameter of experience-based trustworthiness.
Given this, the research question of this thesis is: In what logical topology
and by what means may context provided by autonomous agents be derived and
formally modelled to serve the context-awareness requirements of an
application? This research question also stipulates that the context derivation
needs to incorporate the quality of the context. In this thesis, we focus on the
quality of context parameter of trustworthiness based on experiences having a
level of certainty and referral experiences, thus making trustworthiness
reputation based. Hence, in this thesis we seek a basis on which to reason and
analyse the inherently inaccurate context derived by autonomous agents
populating a ubiquitous computing environment in order to formally model
context-awareness.
More specifically, the contribution of this thesis is threefold: (i) we propose a
logical topology of context derivation and a method of calculating its
trustworthiness, (ii) we provide a general model for storing experiences and (iii)
we formalise the dependence between the logical topology of context derivation
and its experience-based trustworthiness. These contributions enable abstraction
of a context and its quality parameters to a Boolean decision at runtime that may
be formally reasoned with. We employ the Action Systems framework for
modelling this.
The thesis is a compendium of the authorâs scientific papers, which are
republished in Part II. Part I introduces the field of research by providing the
mending elements for the thesis to be a coherent introduction for addressing the
research question. In Part I we also review a significant body of related literature
in order to better illustrate our contributions to the research field.Dagens samhÀlle Àr i allt högre grad beroende av programvara. Exekverbar
programvara, kallat applikationer, körs av processorer, anvÀnder minne och
svarar för kontroll och reglage av funktionalitet som ofta tas för given. Typiskt
för en applikation Àr att den justerar funktionaliteten i respons till en viss
situation. En sÄdan situation prÀglas av ett antal kontext. Varje kontext i sin tur
förses eller hÀrleds frÄn inexakta givare, vilka gestaltar nÄgot informellt fenomen
med varierande kvaliteter.
För att modellera en programvaras beroende av en situation bör dess kontext
inexakthet approximeras. Detta förutsÀtter abstraktion och antaganden av
omgivningen vilket följaktligen möjliggör rigorös modellering. Rigorös
matematisk modellering förlitar sig dessvÀrre pÄ atomisitet, dvs. en kontext
uppdatering Àr förutsÀgbar. Rimligen Àr detta inte fallet för en funktionalitet med
autonomt verksamma aktörer i ubikvitÀr datateknik, t.ex. pÄ grund av mobilitet.
DÀrför Àr den gÀllande kontexten och dess kvaliteter i vilken programvaran
exekverar aldrig sÀker och kan vara subjektiv, vilka utgör Àmnen för en kontexts
kvalitetsparameter tillförlitlighet.
I denna avhandling, undersöks nivÄn pÄ en kontexts kvalitetsparameter
tillförlitlighet samt dess hÀrledning i syfte att ge en klarare presentation av
omgivningen Ät programvaran. Tillförlitlighetsparametern identifierar en aktörs
förvÀntningar pÄ en kontext samt dess övriga kvalitetsparametrar. NivÄn av
tillförlitlighet faststÀlls av den kontext beroende aktören. DÀrmed fÄngar
tillförlitlighet in eventuella fördomar och förvÀntningar samt Àr subjektiv givet
ett kontext utfÀrdat av en aktör. Av detta följer behovet att behandla nivÄn av
tillförlitlighetens (o)sÀkerhet.
Givet detta utformas forskningsfrÄgan som: I vilken logisk topologi samt hur
kan kontext utfÀrdat av autonoma kÀllor hÀrledas och modelleras formellt för att
möta med en kontext medveten applikations krav? Mer specifikt redogör denna
avhandling för problemstÀllningar gÀllande hÀrledning av inexakt data i syftet att
anvÀndas ÀndamÄlsenligt i programvara. I avhandlingen framstÀlls en logisk
topologi för kontext hÀrledning, presenteras en generell modell för lagring av
erfarenheter samt modelleras beronedeskap formellt inom Aktion System
ramverket. Som en följd av detta studerar avhandlingen pÄ vilket sÀtt det gÄr att
ÀndamÄlsenligt modellera och berÀkna osÀker information att presenteras Ät en
agent som Àr beroende av den vid körtid. Avhandlingen motiverar tagna beslut
genom referenser till relaterad forskning.
Tekniskt sett Àr avhandlingen ett kompendium av vetenskapliga artiklar dÀr
skribenten medverkat, vilka Àr Äterpublicerade i Del II. Utöver introduktion av
forsknings omrÄdet i Del I, förser denna del nödvÀndiga element för att
avhandlingen kunde förstÄs som en sammanhÀngande helhet, inklusive
definition av en kontexts hÀrledningstopologi som ett polytrÀd