55 research outputs found

    Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate

    Get PDF
    Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. However, based on a close examination of recent literature, we argue that the role of hydrological control particularly precipitation on nutrient budgets is significantly underestimated in subtropical and tropical forests, hindering our predictions of future forest nutrient status under a changing climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient input and output data in precipitation and streamwater from a subtropical forested watershed in Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and subtropics. The results showed that monthly input and output of all ions and budgets (output – input) of most ions were positively correlated with precipitation quantity and there was a surprisingly greater net ion export during the wet growing season, indicating strong precipitation control on the nutrient budget. The strong precipitation control is also supported by the divergence of acidic precipitation and near neutral acidity of streamwater, with the former being independent from precipitation quantity but the latter being positively related to precipitation quantity. An additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the globe showed a strong correlation between precipitation quantity and nutrient output-input budget, indicating that strong precipitation control is ubiquitous at the global scale and is particularly important in the humid tropical and subtropical forests. Our results imply that climate change could directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern and amount

    Trichome Lengths of the Heterocystous N\u3csub\u3e2\u3c/sub\u3e-Fixing Cyanobacteria in the Tropical Marginal Seas of the Western North Pacific

    Get PDF
    Calothrix rhizosoleniae and Richelia intracellularis are heterocystous cyanobacteria found in the tropical oceans. C. rhizosoleniae commonly live epiphytically on diatom genera Chaetoceros (C-C) and Bacteriastrum (B-C) while R. intracellularis live endosymbiotically within Rhizosolenia (R-R), Guinardia (G-R), and Hemiaulus (H-R); although, they occasionally live freely (FL-C and FL-R). Both species have much shorter trichomes than the other marine filamentous cyanobacteria such as Trichodesmium spp. and Anabaena gerdii. We investigated the trichome lengths of C. rhizosoleniae and R. intracellularis in the South China Sea (SCS) and the Philippine Sea (PS) between 2006 and 2014. On average, H-R had the shortest trichome lengths (3.5 cells/trichome), followed by B-C and C-C (4.9–5.2 cells/trichome) and FL-C (5.9 cells/trichome), and R-R, G-R, and FL-R had the longest trichome lengths (7.4–8.3 cells/trichome). Field results showed the trichome lengths of C-C and B-C did not vary seasonally or regionally. However, FL-C and H-R from the SCS and during the cool season had longer trichomes, where/when the ambient nutrient concentrations were higher. R-R, G-R, and FL-R also showed regional and seasonal variations in trichome length. Ultrastructural analysis found no gas vesicles within the C. rhizosoleniae cells to assist in buoyancy regulation. Results suggest that the trichome lengths of C. rhizosoleniae and R. intracellularis might be regulated by their diatom hosts’ symbiotic styles and by ambient nutrients. Short trichome length might help C. rhizosoleniae and R. intracellularis to stay in the euphotic zone regardless as to whether they are free-living or symbiotic

    Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    Get PDF
    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment

    Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    Get PDF
    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere

    Effects of Dehydration on Brain Perfusion and Infarct Core After Acute Middle Cerebral Artery Occlusion in Rats: Evidence From High-Field Magnetic Resonance Imaging

    Get PDF
    Background: Dehydration is common among ischemic stroke patients and is associated with early neurological deterioration and poor outcome. This study aimed to test the hypothesis that dehydration status is associated with decreased cerebral perfusion and aggravation of ischemic brain injury.Methods: Diffusion-weighted imaging and arterial spin labeling perfusion MR imaging were performed on rats with middle cerebral artery occlusion (MCAO) by using a 9.4T MR imaging scanner to measure the volume of infarction and relative cerebral blood flow (rCBF) after infarction. Twenty-five rats were assigned to either a dehydration group or normal hydration group, and dehydration status was achieved by water deprivation for 48 h prior to MCAO.Results: The volume of the infarction was significantly larger for the dehydration group at the 4th h after MCAO (p = 0.040). The progression in the infarct volume between the 1st and 4th h was also larger in the dehydration group (p = 0.021). The average rCBF values of the contralateral normal hemispheres at the 1st and the 4th h were significantly lower in the dehydration group (p = 0.027 and 0.040, respectively).Conclusions: Our findings suggested that dehydration status is associated with the progression of infarct volume and decreases in cerebral blood flow during the acute stage of ischemic stroke. This preliminary study provided an imaging clue that more intensive hydration therapies and reperfusion strategies are necessary for the management of acute ischemic stroke patients with dehydration status

    Trans-boundary air pollution in a Southeast Asian megacity: Case studies of the synoptic meteorological mechanisms and impacts on air quality

    Get PDF
    Local and regional sources contribute to degraded air quality in many urban areas, however, the influence of trans-boundary air pollution on surface PM2.5 is still poorly characterized in Southeast Asia (SEA) megacities. This study, for the first time, utilizes multi-platform datasets to elucidate two trans-boundary PM2.5 episodes in Ho Chi Minh City (HCMC), Vietnam, over the periods 25–29 Oct 2013 and 05–08 Oct 2015. Both events persisted with limited diurnal fluctuations and more than 60% of the Air Quality Index (AQI) values at an unhealthy level. PM2.5 concentrations during the events were 100% and 115% higher on average compared to local accumulation periods in the same months, highlighting the importance of trans-boundary pollution to local HCMC air quality. Backward trajectories, MERRA-2 AOD data, and CALIPSO images revealed the origin and synoptic meteorology conditions facilitating both trans-boundary pollution events. Anthropogenic PM2.5 emissions in continental East Asia fed the 2013 event, which was then transported by strong northeasterly winds triggered by an upper-level ridge near the Tibetan Plateau and a low-pressure system in western Pacific Ocean. In contrast, the 2015 event was the result of Indonesia biomass burning (BB), which was enhanced and transported by a westward propagating Western Pacific Subtropical High triggered by a strong El Nino ˜ event. Future climate change will likely increase the number of extreme El Nino ˜ events, leading to the increase of transboundary Indonesia BB events to HCMC. This study lays the groundwork for detailing the impact of trans-boundary pollution on local air quality in SEA megacities

    Recent work on sprite spectrum in Taiwan

    Full text link
    campaigns in Taiwan. We first introduce two types of spectroimagers, the slit and slitless types, and discuss their advantages and shortcomings. Next we explore the instrument development and procedures undertaken for this study. In 2006, a slit spectroimager was installed for a sprite campaign and on 15 August of that year, two sprite spectra were recorded using the slit spectroimager along with seven sprites, one halo, one ELVES emission and two jets. By the end of 2015, a slitless spectroimager had been successfully constructed and was ready to conduct additional investigations. On 7 May 2016, a sprite spectrum was recorded using the slitless spectroimager. Following an examination of the calibrations (comprising detection region field of view, wavelength calibration, and response curve), data analysis, and additional calibrations (comprising elevation and azimuthal angles, atmospheric transmittance, and theoretical wavelength calculations) performed in this study, we present the results from our observed sprite spectra using the slit and slitless spectroimagers

    Classifying aerosol type using in situ surface spectral aerosol optical properties

    Get PDF
    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes. Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station. The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations

    Origin, Transport, and Vertical Distribution of Atmospheric Polluntants over the Northern Sourth China Sea During the 7-SEAS-Dongsha Experiment

    Get PDF
    During the spring of 2010, comprehensive in situ measurements were made for the first time on a small atoll (Dongsha Island) in the northern South China Sea (SCS), a key region of the 7-SEAS (the Seven South East Asian Studies) program. This paper focuses on characterizing the source origins, transport processes, and vertical distributions of the Asian continental outflows over the region, using measurements including mass concentration, optical properties, hygroscopicity, and vertical distribution of the aerosol particles, as well as the trace gas composition. Cluster analysis of backward trajectories classified 52% of the air masses arriving at ground level of Dongsha Island as having a continental origin, mainly from northern China to the northern SCS, passing the coastal area and being confined in the marine boundary layer (0-0.5 km). Compared to aerosols of oceanic origin, the fine mode continental aerosols have a higher concentration, extinction coefficient, and single-scattering albedo at 550 nm (i.e., 19 vs. 14 microg per cubic meter in PM(sub 2.5); 77 vs. 59 M per meter in beta(sub e); and 0.94 vs. 0.90 in omega, respectively). These aerosols have a higher hygroscopicity (f at 85% RH = 2.1) than those in the upwind inland regions, suggesting that the aerosols transported to the northern SCS were modified by the marine environment. In addition to the near-surface aerosol transport, a significant upper-layer (3-4 km) transport of biomass-burning aerosols was observed. Our results suggest that emissions from both China and Southeast Asia could have a significant impact on the aerosol loading and other aerosol properties over the SCS. Furthermore, the complex vertical distribution of aerosols-coinciding-with-clouds has implications for remote-sensing observations and aerosol-cloud-radiation interactions

    An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Get PDF
    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and chemical processes along transport pathways. In addition, we raise key questions to be addressed by a coming deployment during springtime 2013 in northern SEA, named 7-SEASBASELInE (Biomass-burning Aerosols Stratocumulus Environment: Lifecycles and Interactions Experiment). This campaign will include a synergistic approach for further exploring many key atmospheric processes (e.g., complex aerosol-cloud interactions) and impacts of biomass burning on the surface-atmosphere energy budgets during the lifecycles of biomass burning emissions
    • …
    corecore