238 research outputs found

    Samoa technical report - Review of volcanic hazard maps for Savai'i and Upolu

    Get PDF
    Both main islands of Samoa, Savai'i and Upolu need to be considered as potentially volcanically active. The most recent eruptions in historic times happened on Savai'i in 1905-1911, 1902 and 1760 (estimated). Though detailed volcanic studies and dating of volcanic events are very limited there is evidence for repeated volcanic activity on both islands since the time of human occupation of the islands marked by prominent and fresh appearance of tuff cones as Tafua (= fire mountain) Savai'i, the island of Apolima, Tafua Upolu and offshore Cape Tapaga. This report examines the volcanic risks for both islands and defines for disaster management considerations potential eruption scenarios based on eyewitness accounts of previous eruptions, geological field evidence, remote sensing information and experiences from similar volcanoes. A detailed timeline of events, potential impacts and required emergency response activities are listed for the five potential eruption types (1) long-term lava field (2) short-term spatter-cone (3) explosive phreatomagmatic (4) explosive scoria-cone and (5) submarine flank collapse. Given the nature of volcanism in Samoa with hundreds of individual "one-off" volcanoes scattered along zones of structural weakness within the Savai'i - Upolu Platform - predicting the exact location of future eruption centres is impossible. At the current stage of knowledge a presentation of a volcanic hazard map is inadequate and would require additional baseline studies to statistically define recurrence intervals and areas of higher volcanic activity. Taking these limitations into account, maps showing the relative potential for new eruption vents on Upolu and Savai'i are derived from geomorphologic features. To improve our understanding and management of the volcanic risks of Samoa, suggestions for achievable future work are listed and prioritised. These recommendations include geological/volcanological baseline studies (e.g. dating/detailed analyses of past events, rock chemistry, volcano structure); installation of early warning and monitoring network (e.g. permanent GPS, seismometers); and disaster preparedness and volcanic crisis response planning

    An integrated circuit for chip-based analysis of enzyme kinetics and metabolite quantification

    Get PDF
    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 216 sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2 – 12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM – 231 mM, encompassing glucose’s physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine

    Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank

    Get PDF
    Results of linear bifurcation and nonlinear analyses of the Space Shuttle superlightweight (SLWT) external liquid-oxygen (LO2) tank for an important early booster ascent loading condition are presented. These results for thin-walled linear elastic shells that are subjected to combined mechanical and thermal loads illustrate an important type of response mode that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the forward ogive section of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of short-wavelength bending deformations in the forward ogive and barrel sections of the LO2 tank that growing amplitude in a stable manner increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the forward ogive section. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shield generally require a large-scale, high-fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 2.6 times the values of the operational loads considered

    Nonlinear Analysis of the Space Shuttle Super-Lightweight External Fuel Tank

    Get PDF
    The results of buckling and nonlinear analyses of the Space Shuttle External Tank super-lightweight liquid oxygen (LOX) tank are presented. Modeling details and results are presented for two prelaunch loading conditions and for two full-scale structural tests conducted on the original external tank. These results illustrate three distinctly different types of nonlinear responses for thin-walled shells subjected to combined mechanical and thermal loads. These nonlinear response phenomena consist of bifurcation-type buckling, short-wavelength nonlinear bending, and nonlinear collapse associated with a limit point. For each case, the results show that accurate predictions of nonlinear behavior generally require a large scale high-fidelity finite element model. Results are also presented that show that a fluid filled launch vehicle shell can be highly sensitive to initial geometric imperfections. In addition, results presented for two full scale structural tests of the original standard weight external tank suggest that the finite element modeling approach used in the present study is sufficient for representing the nonlinear behavior of the super lightweight LOX tank

    K2 observations of pulsating subdwarf B stars: Analysis of EPIC 203948264 observed during Campaign 2

    Get PDF
    We apply asteroseismic tools to the newly discovered subdwarf B (sdB) pulsator EPIC 203948264, observed with K2, the two-gyro mission of the Kepler space telescope. A time series analysis of the 83-d Campaign 2 (C2) short-cadence data set has revealed a g-mode pulsation spectrum with 22 independent pulsation periods between 0.5 and 2.8 h. Most of the pulsations fit the asymptotic period sequences for ℓ = 1 or 2, with average period spacings of 261.3 ± 1.1 and 151.18 ± 0.37 s, respectively. The pulsation amplitudes are below 0.77 ppt and vary over time. We include updated spectroscopic parameters, including atmospheric abundances and radial velocities, which give no indication for binarity in this star. We detect one possible low-amplitude multiplet, which corresponds to a rotation period of 46 d or longer. EPIC 203948264 appears as another slowly rotating sdB star

    \u3ci\u3eAquastella gen. nov.\u3c/i\u3e: A new genus of saprolegniaceous oomycete rotifer parasites related to \u3ci\u3eAphanomyces\u3c/i\u3e, with unique sporangial outgrowths

    Get PDF
    The oomycete genus Aquastella is described to accommodate two new species of parasites of rotifers observed in Brooktrout Lake, New York State, USA. Three rotifer species – Keratella taurocephala,Polyarthra vulgaris, and Ploesoma truncatum – were infected, and this is the first report of oomycete infection in these species. Aquastella attenuata was specific to K. taurocephala and Aquastella aciculariswas specific to P. vulgaris and P. truncatum. The occurrence of infections correlated with peak host population densities and rotifers were infected in the upper layers of the water column. Sequencing of 18S rRNA and phylogenetic analysis of both species placed them within the order Saprolegniales, in a clade closely related to Aphanomyces. The Aquastella species were morphologically distinct from other rotifer parasites as the developing sporangia penetrated out through the host body following its death to produce unique tapered outgrowths. Aquastella attenuata produced long, narrow, tapering, finger-like outgrowths, whilst A. acicularis produced shorter, spike-like outgrowths. We hypothesize that the outgrowths serve to deter predation and slow descent in the water column. Spore cleavage was intrasporangial with spore release through exit tubes. Aquastella attenuata produced primary zoospores, whereas A. acicularisreleased spherical primary aplanospores, more typical of other genera in the Aphanomyces clade

    A Probabilistic Assessment of the COVID-19 Lockdown on Air Quality in the UK

    Get PDF
    In March 2020 the United Kingdom (UK) entered a nationwide lockdown period due to the Covid-19 pandemic. As a result, levels of nitrogen dioxide (NO2) in the atmosphere dropped. In this work, we use 550,134 NO2 data points from 237 stations in the UK to build a spatiotemporal Gaussian process capable of predicting NO2 levels across the entire UK. We integrate several covariate datasets to enhance the model's ability to capture the complex spatiotemporal dynamics of NO2. Our numerical analyses show that, within two weeks of a UK lockdown being imposed, UK NO2 levels dropped 36.8%. Further, we show that as a direct result of lockdown NO2 levels were 29-38% lower than what they would have been had no lockdown occurred. In accompaniment to these numerical results, we provide a software framework that allows practitioners to easily and efficiently fit similar models

    The Grizzly, December 6, 1985

    Get PDF
    Contemporary Women Playwrites Recent Lecture Focus • Faculty Carries Heavy Work Load • A Radio Station in the Making • Letters: RA System not Fair for Anyone; Does our School Paper Have a Monopoly? • Campus Memo: Learn to say no Effectively • In Search of Success: Mary Lou Happy as Claims Adjuster • Campus Briefs: Financial Aid Office Sends out Survey; Davidson Conducts Workshop on Athletic Tech.; Open Dailog Considers Scrapping U.S. Constitution • CPP Offers Lecture on Careers in Sales • Lady Bears Battle Tough Division II Competition • Matmen Finish Third in Invitational • Women\u27s Gymnastics Drops to Montclair State • Final Exam Schedule • Boxing Brother: Hammerin\u27 Hankhttps://digitalcommons.ursinus.edu/grizzlynews/1154/thumbnail.jp

    Rapid Diagnostic Algorithms as a Screening Tool for Tuberculosis: An Assessor Blinded Cross-Sectional Study

    Get PDF
    Background: A major obstacle to effectively treat and control tuberculosis is the absence of an accurate, rapid, and low-cost diagnostic tool. A new approach for the screening of patients for tuberculosis is the use of rapid diagnostic classification algorithms. Methods: We tested a previously published diagnostic algorithm based on four biomarkers as a screening tool for tuberculosis in a Central European patient population using an assessor-blinded cross-sectional study design. In addition, we developed an improved diagnostic classification algorithm based on a study population at a tertiary hospital in Vienna, Austria, by supervised computational statistics. Results: The diagnostic accuracy of the previously published diagnostic algorithm for our patient population consisting of 206 patients was 54% (CI: 47%–61%). An improved model was constructed using inflammation parameters and clinical information. A diagnostic accuracy of 86% (CI: 80%–90%) was demonstrated by 10-fold cross validation. An alternative model relying solely on clinical parameters exhibited a diagnostic accuracy of 85% (CI: 79%–89%). Conclusion: Here we show that a rapid diagnostic algorithm based on clinical parameters is only slightly improved by inclusion of inflammation markers in our cohort. Our results also emphasize the need for validation of new diagnostic algorithms in different settings and patient populations
    • …
    corecore