8,193 research outputs found
Noncommutative geometry and stochastic processes
The recent analysis on noncommutative geometry, showing quantization of the
volume for the Riemannian manifold entering the geometry, can support a view of
quantum mechanics as arising by a stochastic process on it. A class of
stochastic processes can be devised, arising as fractional powers of an
ordinary Wiener process, that reproduce in a proper way a stochastic process on
a noncommutative geometry. These processes are characterized by producing
complex values and so, the corresponding Fokker-Planck equation resembles the
Schroedinger equation. Indeed, by a direct numerical check, one can recover the
kernel of the Schroedinger equation starting by an ordinary Brownian motion.
This class of stochastic processes needs a Clifford algebra to exist. In four
dimensions, the full set of Dirac matrices is needed and the corresponding
stochastic process in a noncommutative geometry is easily recovered as is the
Dirac equation in the Klein-Gordon form being it the Fokker--Planck equation of
the process.Comment: 16 pages, 2 figures. Updated a reference. A version of this paper
will appear in the proceedings of GSI2017, Geometric Science of Information,
November 7th to 9th, Paris (France
Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience
Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues
Murine model for Fusarium oxysporum invasive fusariosis reveals organ-specific structures for dissemination and long-term persistence
Peer reviewedPublisher PD
Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes.
Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: The whitefly Trialeurodes vaporariorum is an economically important crop pest in temperate regions that has developed resistance to most classes of insecticides. However, the molecular mechanisms underlying resistance have not been characterised and, to date, progress has been hampered by a lack of nucleotide sequence data for this species. Here, we use pyrosequencing on the Roche 454-FLX platform to produce a substantial and annotated EST dataset. This 'unigene set' will form a critical reference point for quantitation of over-expressed messages via digital transcriptomics. RESULTS: Pyrosequencing produced around a million sequencing reads that assembled into 54,748 contigs, with an average length of 965 bp, representing a dramatic expansion of existing cDNA sequences available for T. vaporariorum (only 43 entries in GenBank at the time of this publication). BLAST searching of non-redundant databases returned 20,333 significant matches and those gene families potentially encoding gene products involved in insecticide resistance were manually curated and annotated. These include, enzymes potentially involved in the detoxification of xenobiotics and those encoding the targets of the major chemical classes of insecticides. A total of 57 P450s, 17 GSTs and 27 CCEs were identified along with 30 contigs encoding the target proteins of six different insecticide classes. CONCLUSION: Here, we have developed new transcriptomic resources for T. vaporariorum. These include a substantial and annotated EST dataset that will serve the community studying this important crop pest and will elucidate further the molecular mechanisms underlying insecticide resistance.CASE PhD studentship BBSRCBayer CropScienceRothamsted Researc
QCD axion and quintessential axion
The axion solution of the strong CP problem is reviewed together with the
other strong CP solutions. We also point out the quintessential
axion(quintaxion) whose potential can be extremely flat due to the tiny ratio
of the hidden sector quark mass and the intermediate hidden sector scale. The
quintaxion candidates are supposed to be the string theory axions, the model
independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200
Exactly Marginal Deformations and Global Symmetries
We study the problem of finding exactly marginal deformations of N=1
superconformal field theories in four dimensions. We find that the only way a
marginal chiral operator can become not exactly marginal is for it to combine
with a conserved current multiplet. Additionally, we find that the space of
exactly marginal deformations, also called the "conformal manifold," is the
quotient of the space of marginal couplings by the complexified continuous
global symmetry group. This fact explains why exactly marginal deformations are
ubiquitous in N=1 theories. Our method turns the problem of enumerating exactly
marginal operators into a problem in group theory, and substantially extends
and simplifies the previous analysis by Leigh and Strassler. We also briefly
discuss how to apply our analysis to N=2 theories in three dimensions.Comment: 23 pages, 2 figure
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Condensate cosmology in O'Raifeartaigh models
Flat directions charged under an R-symmetry are a generic feature of
O'Raifeartaigh models. Non-topological solitons associated with this symmetry,
R-balls, are likely to form through the fragmentation of a condensate, itself
created by soft terms induced during inflation. In gravity mediated SUSY
breaking R-balls decay to gravitinos, reheating the universe. For gauge
mediation R-balls can provide a good dark matter candidate. Alternatively they
can decay, either reheating or cooling the universe. Conserved R-symmetry
permits decay to gravitinos or gauginos, whereas spontaneously broken
R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for
publication in JHE
An Analysis of Provider Attitudes Toward a Clinical Decision Support System for the Intrapartum Management of Group B Strep
Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry
It is well known that R-symmetric models dramatically alleviate the SUSY
flavor and CP problems. We study particular modifications of existing
R-symmetric models which share the solution to the above problems, and have
interesting consequences for electroweak baryogenesis and the Dark Matter (DM)
content of the universe. In particular, we find that it is naturally possible
to have a strongly first-order electroweak phase transition while
simultaneously relaxing the tension with EDM experiments. The R-symmetry (and
its small breaking) implies that the gauginos (and the neutralino LSP) are
pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The
singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role
in making the electroweak phase transition strongly first-order. The
pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac
particle during freeze-out, but like a Majorana particle for annihilation today
and in scattering against nuclei, thus being consistent with current
constraints. Assuming a standard cosmology, it is possible to simultaneously
have a strongly first-order phase transition conducive to baryogenesis and have
the LSP provide the full DM relic abundance, in part of the allowed parameter
space. However, other possibilities for DM also exist, which are discussed. It
is expected that upcoming direct DM searches as well as neutrino signals from
DM annihilation in the Sun will be sensitive to this class of models.
Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
- …
