7,675 research outputs found

    Signal processing for molecular and cellular biological physics:an emerging field

    Get PDF
    Recent advances in our ability to watch the molecular and cellular processes of life in action-such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer-raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied

    USP7 controls NGN3 stability and pancreatic endocrine lineage development

    Get PDF
    AbstractUnderstanding the factors and mechanisms involved in beta-cell development will guide therapeutic efforts to generate fully functional beta cells for diabetes. Neurogenin 3 (NGN3) is the key transcription factor that marks endocrine progenitors and drives beta-cell differentiation. Here we screen for binding partners of NGN3 and identify the deubiquitylating enzyme USP7 as a key regulator of NGN3 stability. Mechanistically, USP7 interacts with, deubiquitinates and stabilizes NGN3. In vivo, conditional knockout of Usp7 in the mouse embryonic pancreas causes a dramatic reduction in islet formation and hyperglycemia in adult mice, due to impaired NGN3-mediated endocrine specification during pancreatic development. Furthermore, pharmacological inhibition of USP7 during endocrine specification in human iPSC models of beta-cell differentiation decreases NGN3 expressing progenitor cell numbers and impairs beta cell differentiation. Thus, the USP7-NGN3 axis is an essential mechanism for driving endocrine development and beta-cell differentiation, which can be therapeutically exploited.</jats:p

    A constitutive model for cytoskeletal contractility of smooth muscle cells

    Get PDF
    The constitutive model presented in this article aims to describe the main bio-chemo-mechanical features involved in the contractile response of smooth muscle cells, in which the biochemical response is modelled by extending the four-state Hai–Murphy model to isotonic contraction of the cells and the mechanical response is mainly modelled based on the phosphorylation-dependent hyperbolic relation between isotonic shortening strain rate and tension. The one-dimensional version of the model is used to simulate shortening-induced deactivation with good agreement with selected experimental measurements. The results suggest that the Hai–Murphy biochemical model neglects the strain rate effect on the kinetics of cross-bridge interactions with actin filaments in the isotonic contractions. The two-dimensional version and three-dimensional versions of the model are developed using the homogenization method under finite strain continuum mechanics framework. The two-dimensional constitutive model is used to simulate swine carotid media strips under electrical field stimulation, experimentally investigated by Singer and Murphy, and contraction of a hollow airway and a hollow arteriole buried in a soft matrix subjected to multiple calcium ion stimulations. It is found that the transverse deformation may have significant influence on the response of the swine carotid medium. In both cases, the orientation of the maximal value of attached myosin is aligned with the orientation of maximum principal stress

    Which quality of life score is best for glaucoma patients and why?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The glaucomas are generally asymptomatic diseases until they are very advanced. They affect 2% of the population over 40 years of age and therefore represent a significant public health issue. There have been a number of attempts to develop quality of life scales for the disease. This review discusses the pros and cons of these scales and suggests the best of the current ones for use in a clinical setting.</p> <p>Methods</p> <p>Medline, Embase and Google Scholar were searched for relevant articles. No time period was defined and all types of article were included.</p> <p>Results</p> <p>11 Quality of Life scores were identified that have been used with glaucoma patients.</p> <p>Conclusion</p> <p>There is no generally accepted 'best' Quality of Life instrument for use in glaucoma. Many of the scales are biased towards physical symptoms and do little to address the personal or social factors of the disease. Further work is needed to produce scales that address all these areas as well as being simple to administer in a clinical setting.</p

    Hyporheic Zone Microbiome Assembly Is Linked to Dynamic Water Mixing Patterns in Snowmelt-Dominated Headwater Catchments

    Get PDF
    Terrestrial and aquatic elemental cycles are tightly linked in upland fluvial networks. Biotic and abiotic mineral weathering, microbially mediated degradation of organic matter, and anthropogenic influences all result in the movement of solutes (e.g., carbon, metals, and nutrients) through these catchments, with implications for downstream water quality. Within the river channel, the region of hyporheic mixing represents a hot spot of microbial activity, exerting significant control over solute cycling. To investigate how snowmelt-driven seasonal changes in river discharge affect microbial community assembly and carbon biogeochemistry, depth-resolved pore water samples were recovered from multiple locations around a representative meander on the East River near Crested Butte, CO, USA. Vertical temperature sensor arrays were also installed in the streambed to enable seepage flux estimates. Snowmelt-driven high river discharge led to an expanding zone of vertical hyporheic mixing and introduced dissolved oxygen into the streambed that stimulated aerobic microbial respiration. These physicochemical processes contributed to microbial communities undergoing homogenizing selection, in contrast to other ecosystems where lower permeability may limit the extent of mixing. Conversely, lower river discharge conditions led to a greater influence of upwelling groundwater within the streambed and a decrease in microbial respiration rates. Associated with these processes, microbial communities throughout the streambed exhibited increasing dissimilarity between each other, suggesting that the earlier onset of snowmelt and longer periods of base flow may lead to changes in the composition (and associated function) of streambed microbiomes, with consequent implications for the processing and export of solutes from upland catchments
    corecore