2,684 research outputs found
Duality and Dynamical Supersymmetry Breaking in with a Spinor
We study supersymmetric chiral gauge theories with a
single spinor representation and vector representations. We present a dual
description in terms of an supersymmetric chiral gauge
theory with a symmetric tensor, one fundamental and antifundamental
representations. The theory with breaks supersymmetry at
strong coupling; we study how this arises at weak coupling in the dual theory,
which is a spontaneously broken gauge theory. Also, we recover various known
dualities, find new dual pairs and generate new examples of dynamical
supersymmetry breaking.Comment: 9 pages, uses harvmac, no figur
A Composite Little Higgs Model
We describe a natural UV complete theory with a composite little Higgs. Below
a TeV we have the minimal Standard Model with a light Higgs, and an extra
neutral scalar. At the TeV scale there are additional scalars, gauge bosons,
and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce
the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass
squared parameter, without finetuning, occurs due to a softly broken shift
symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale
the theory has new strongly coupled interactions. A perturbatively
renormalizable UV completion, with softly broken supersymmetry at 10 TeV is
explicitly worked out. Our theory contains new particles which are odd under an
exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is
likely to be a feature of many theories of new TeV scale physics. The lightest
parity odd particle, or "LPOP", is most likely a neutral fermion, and may make
a good dark matter candidate, with similar experimental signatures to the
neutralino of the MSSM. We give a general effective field theory analysis of
the calculation of corrections to precision electroweak observables.Comment: 28 page
Dynamic Image-Based Modelling of Kidney Branching Morphogenesis
Kidney branching morphogenesis has been studied extensively, but the
mechanism that defines the branch points is still elusive. Here we obtained a
2D movie of kidney branching morphogenesis in culture to test different models
of branching morphogenesis with physiological growth dynamics. We carried out
image segmentation and calculated the displacement fields between the frames.
The models were subsequently solved on the 2D domain, that was extracted from
the movie. We find that Turing patterns are sensitive to the initial conditions
when solved on the epithelial shapes. A previously proposed diffusion-dependent
geometry effect allowed us to reproduce the growth fields reasonably well, both
for an inhibitor of branching that was produced in the epithelium, and for an
inducer of branching that was produced in the mesenchyme. The latter could be
represented by Glial-derived neurotrophic factor (GDNF), which is expressed in
the mesenchyme and induces outgrowth of ureteric branches. Considering that the
Turing model represents the interaction between the GDNF and its receptor RET
very well and that the model reproduces the relevant expression patterns in
developing wildtype and mutant kidneys, it is well possible that a combination
of the Turing mechanism and the geometry effect control branching
morphogenesis
The flat phase of fixed-connectivity membranes
The statistical mechanics of flexible two-dimensional surfaces (membranes)
appears in a wide variety of physical settings. In this talk we discuss the
simplest case of fixed-connectivity surfaces. We first review the current
theoretical understanding of the remarkable flat phase of such membranes. We
then summarize the results of a recent large scale Monte Carlo simulation of
the simplest conceivable discrete realization of this system \cite{BCFTA}. We
verify the existence of long-range order, determine the associated critical
exponents of the flat phase and compare the results to the predictions of
various theoretical models.Comment: 7 pages, 5 figures, 3 tables. LaTeX w/epscrc2.sty, combined
contribution of M. Falcioni and M. Bowick to LATTICE96(gravity), to appear in
Nucl. Phys. B (proc. suppl.
The Phase Diagram of Crystalline Surfaces
We report the status of a high-statistics Monte Carlo simulation of
non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of
size up to nodes. We impose free boundary conditions. The free energy
is a gaussian spring tethering potential together with a normal-normal bending
energy. Particular emphasis is given to the behavior of the model in the cold
phase where we measure the decay of the normal-normal correlation function.Comment: 9 pages latex (epsf), 4 EPS figures, uuencoded and compressed.
Contribution to Lattice '9
The Littlest Higgs
We present an economical theory of natural electroweak symmetry breaking,
generalizing an approach based on deconstruction. This theory is the smallest
extension of the Standard Model to date that stabilizes the electroweak scale
with a naturally light Higgs and weakly coupled new physics at TeV energies.
The Higgs is one of a set of pseudo Goldstone bosons in an
nonlinear sigma model. The symmetry breaking scale is around a TeV, with
the cutoff \Lambda \lsim 4\pi f \sim 10 TeV. A single electroweak doublet,
the ``little Higgs'', is automatically much lighter than the other pseudo
Goldstone bosons. The quartic self-coupling for the little Higgs is generated
by the gauge and Yukawa interactions with a natural size ,
while the top Yukawa coupling generates a negative mass squared triggering
electroweak symmetry breaking. Beneath the TeV scale the effective theory is
simply the minimal Standard Model. The new particle content at TeV energies
consists of one set of spin one bosons with the same quantum numbers as the
electroweak gauge bosons, an electroweak singlet quark with charge 2/3, and an
electroweak triplet scalar. One loop quadratically divergent corrections to the
Higgs mass are cancelled by interactions with these additional particles.Comment: 15 pages. References added. Corrected typos in the discussion of the
top Yukawa couplin
Solitonic Strings and BPS Saturated Dyonic Black Holes
We consider a six-dimensional solitonic string solution described by a
conformal chiral null model with non-trivial superconformal transverse
part. It can be interpreted as a five-dimensional dyonic solitonic string wound
around a compact fifth dimension. The conformal model is regular with the
short-distance (`throat') region equivalent to a WZW theory. At distances
larger than the compactification scale the solitonic string reduces to a dyonic
static spherically-symmetric black hole of toroidally compactified heterotic
string. The new four-dimensional solution is parameterised by five charges,
saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and
moduli fields of two-torus. When acted by combined T- and S-duality
transformations it serves as a generating solution for all the static
spherically-symmetric BPS-saturated configurations of the low-energy heterotic
string theory compactified on six-torus. Solutions with regular horizons have
the global space-time structure of extreme Reissner-Nordstrom black holes with
the non-zero thermodynamic entropy which depends only on conserved (quantised)
charge vectors. The independence of the thermodynamic entropy on moduli and
axion-dilaton couplings strongly suggests that it should have a microscopic
interpretation as counting degeneracy of underlying string configurations. This
interpretation is supported by arguments based on the corresponding
six-dimensional conformal field theory. The expression for the level of the WZW
theory describing the throat region implies a renormalisation of the string
tension by a product of magnetic charges, thus relating the entropy and the
number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected,
erratum to appear in Phys. Rev. D
Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime
We prove that the singularity structure of all n-point distributions of a
state of a generalised real free scalar field in curved spacetime can be
estimated if the two-point distribution is of Hadamard form. In particular this
applies to the real free scalar field and the result has applications in
perturbative quantum field theory, showing that the class of all Hadamard
states is the state space of interest. In our proof we assume that the field is
a generalised free field, i.e. that it satisies scalar (c-number) commutation
relations, but it need not satisfy an equation of motion. The same argument
also works for anti-commutation relations and it can be generalised to
vector-valued fields. To indicate the strengths and limitations of our
assumption we also prove the analogues of a theorem by Borchers and Zimmermann
on the self-adjointness of field operators and of a very weak form of the
Jost-Schroer theorem. The original proofs of these results in the Wightman
framework make use of analytic continuation arguments. In our case no
analyticity is assumed, but to some extent the scalar commutation relations can
take its place.Comment: 18 page
High precision and continuous field measurements of δ 13C and δ 18O in carbon dioxide with a cryogen-free QCLAS
The present paper describes a compact and cryogen-free, quantum cascade laser based absorption spectrometer (QCLAS) designed for in situ, continuous and high precision isotope ratio measurements of atmospheric CO2. The mobile instrument incorporates several new features including a novel astigmatic multi-pass cell assembly, a quasi-room temperature quantum cascade laser, thermoelectrically cooled detectors as well as a new retrieval approach. The combination of these features now makes it possible to measure isotope ratios of ambient CO2 with a precision of 0.03 and 0.05‰ for δ13C and δ18O, respectively, using a 100s integration time. A robust and optimized calibration procedure was developed to bring the retrieved isotope ratios on an absolute scale. This assures an accuracy better than 0.1‰ under laboratory conditions. The instrument performance was also assessed in a field campaign in which the spectrometer operated autonomously and provided mixing ratio values for the main three CO2 isotopologues at one second time resolution. An accuracy of 0.2‰ was routinely obtained for both isotope ratios during the entire period. The results were in excellent agreement with the standard laboratory-based isotope ratio mass spectrometer measurements made on field-collected flask samples. A few illustrative examples are used to depict the potential of this optical method in atmosphere-biosphere researc
Magnetoresistance of nondegenerate quantum electron channels formed on the surface of superfluid helium
Transport properties of quasi-one-dimensional nondegenerate quantum wires
formed on the surface of liquid helium in the presence of a normal magnetic
field are studied using the momentum balance equation method and the memory
function formalism. The interaction with both kinds of scatterers available
(vapor atoms and capillary wave quanta) is considered. We show that unlike
classical wires, quantum nondegenerate channels exhibit strong
magnetoresistance which increases with lowering the temperature.Comment: 8 pages, 7 figure
- …