Abstract

The statistical mechanics of flexible two-dimensional surfaces (membranes) appears in a wide variety of physical settings. In this talk we discuss the simplest case of fixed-connectivity surfaces. We first review the current theoretical understanding of the remarkable flat phase of such membranes. We then summarize the results of a recent large scale Monte Carlo simulation of the simplest conceivable discrete realization of this system \cite{BCFTA}. We verify the existence of long-range order, determine the associated critical exponents of the flat phase and compare the results to the predictions of various theoretical models.Comment: 7 pages, 5 figures, 3 tables. LaTeX w/epscrc2.sty, combined contribution of M. Falcioni and M. Bowick to LATTICE96(gravity), to appear in Nucl. Phys. B (proc. suppl.

    Similar works