716 research outputs found

    Evidence for non-stellar rest-frame near-IR emission associated with increased star formation in galaxies at z1z \sim 1

    Get PDF
    We explore the presence of non-stellar rest-frame near-IR (25 μm2-5 \ \mu \mathrm{m}) emission in galaxies at z1z \sim 1. Previous studies identified this excess in relatively small samples and suggested that such non-stellar emission, which could be linked to the 3.3 μm3.3 \ \mu \mathrm{m} polycyclic aromatic hydrocarbons feature or hot dust emission, is associated with an increased star formation rate (SFR). In this Letter, we confirm and quantify the presence of an IR excess in a significant fraction of galaxies in the 3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and without strong non-stellar near-IR emission, we find that galaxies with such emission are predominantly star-forming galaxies. Moreover, star-forming galaxies with an excess show increased mid- and far-IR and Hα\alpha emission compared to other star-forming galaxies without. While galaxies with a near-IR excess show a larger fraction of individually detected X-ray active galactic nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and Hα\alpha profiles, shows that AGNs are unlikely to be the dominant source of the excess in the majority of galaxies. Our results suggest that non-stellar near-IR emission is linked to increased SFRs and is ubiquitous among star-forming galaxies. As such, the near-IR emission might be a powerful tool to measure SFRs in the era of the James Webb Space Telescope.Comment: 6 pages, 5 figures, accepted for publication in ApJ

    On the formation of massive quiescent galaxies with diverse morphologies in the TNG50 simulation

    Get PDF
    Observations have shown that the star-formation activity and the morphology of galaxies are closely related, but the underlying physical connection is not well understood. Using the TNG50 simulation, we explore the quenching and the morphological evolution of the 102 massive quiescent galaxies in the mass range of 10.5<log(Mstellar/M)<11.510.5<\log(M_{\rm stellar}/M_{\odot})<11.5 selected at z=0z=0. The morphology of galaxies is quantified based on their kinematics, and we measure the quenching timescale of individual galaxies directly from star formation history. We show that galaxies tend to be quenched more rapidly if they: (i) are satellites in massive halos, (ii) have lower star-forming gas fractions, or (iii) inject a larger amount of black hole kinetic feedback energy. By following the global evolutionary pathways, we conclude that quiescent discs are mainly disc galaxies that are recently and slowly quenched. Approximately half of the quiescent ellipticals at z=0z=0 are rapidly quenched at higher redshifts while still disc-like. While being quiescent, they gradually become more elliptical mostly by disc heating, yet these ellipticals still retain some degree of rotation. The other half of quiescent ellipticals with the most random motion-dominated kinematics build up large spheroidal components before quenching primarily by mergers, or in some cases, misaligned gas accretion. However, the mergers that contribute to morphological transformation do not immediately quench galaxies in many cases. In summary, we find that quenching and morphological transformation are decoupled. We conclude that the TNG black hole feedback -- in combination with the stochastic merger history of galaxies -- leads to a large diversity of quenching timescales and a rich morphological landscape.Comment: Submitted to MNRAS. 9 Figures 17 Pages. Comments are very welcome

    Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5<z<2.5

    Get PDF
    In this paper, we investigate the relationship between star formation and structure, using a mass-complete sample of 27,893 galaxies at 0.5<z<2.50.5<z<2.5 selected from 3D-HST. We confirm that star-forming galaxies are larger than quiescent galaxies at fixed stellar mass (M_{\star}). However, in contrast with some simulations, there is only a weak relation between star formation rate (SFR) and size within the star-forming population: when dividing into quartiles based on residual offsets in SFR, we find that the sizes of star-forming galaxies in the lowest quartile are 0.27±\pm0.06 dex smaller than the highest quartile. We show that 50% of star formation in galaxies at fixed M_{\star} takes place within a narrow range of sizes (0.26 dex). Taken together, these results suggest that there is an abrupt cessation of star formation after galaxies attain particular structural properties. Confirming earlier results, we find that central stellar density within a 1 kpc fixed physical radius is the key parameter connecting galaxy morphology and star formation histories: galaxies with high central densities are red and have increasingly lower SFR/M_{\star}, whereas galaxies with low central densities are blue and have a roughly constant (higher) SFR/M_{\star} at a given redshift. We find remarkably little scatter in the average trends and a strong evolution of >>0.5 dex in the central density threshold correlated with quiescence from z0.72.0z\sim0.7-2.0. Neither a compact size nor high-nn are sufficient to assess the likelihood of quiescence for the average galaxy; rather, the combination of these two parameters together with M_{\star} results in a unique quenching threshold in central density/velocity.Comment: 20 pages, 15 figures, and 2 tables; Accepted for publication in the Astrophysical Journa

    Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z~2

    Get PDF
    Quiescent galaxies at z~2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically-quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hbeta (4861A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G-band (4304A), Mg I (5175A), and Na I (5894A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^0.1_0.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^0.5_0.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^0.2_0.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [OIII] and Hbeta emission. Interestingly, this emission is more centrally concentrated than the continuum with L_[OIII] = 1.7 +/- 0.3 x 10^40 erg s^-1, indicating residual central star formation or nuclear activity.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    First results from the VIRIAL survey: the stellar content of UVJUVJ-selected quiescent galaxies at 1.5<z<21.5 < z < 2 from KMOS

    Get PDF
    We investigate the stellar populations of 25 massive, galaxies (log[M/M]10.9\log[M_\ast/M_\odot] \geq 10.9) at 1.5<z<21.5 < z < 2 using data obtained with the K-band Multi-Object Spectrograph (KMOS) on the ESO VLT. Targets were selected to be quiescent based on their broadband colors and redshifts using data from the 3D-HST grism survey. The mean redshift of our sample is zˉ=1.75\bar{z} = 1.75, where KMOS YJ-band data probe age- and metallicity-sensitive absorption features in the rest-frame optical, including the GG band, Fe I, and high-order Balmer lines. Fitting simple stellar population models to a stack of our KMOS spectra, we derive a mean age of 1.030.08+0.131.03^{+0.13}_{-0.08} Gyr. We confirm previous results suggesting a correlation between color and age for quiescent galaxies, finding mean ages of 1.220.19+0.561.22^{+0.56}_{-0.19} Gyr and 0.850.05+0.080.85^{+0.08}_{-0.05} Gyr for the reddest and bluest galaxies in our sample. Combining our KMOS measurements with those obtained from previous studies at 0.2<z<20.2 < z < 2 we find evidence for a 232-3 Gyr spread in the formation epoch of massive galaxies. At z<1z < 1 the measured stellar ages are consistent with passive evolution, while at 1<z21 < z \lesssim2 they appear to saturate at \sim1 Gyr, which likely reflects changing demographics of the (mean) progenitor population. By comparing to star-formation histories inferred for "normal" star-forming galaxies, we show that the timescales required to form massive galaxies at z1.5z \gtrsim 1.5 are consistent with the enhanced α\alpha-element abundances found in massive local early-type galaxies.Comment: 6 pages, 5 figures, accepted for publication in ApJ

    Direct measurements of dust attenuation in z~1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    Full text link
    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (AV,HIIA_{V,\mathrm{HII}}) and the integrated dust content (AV,starA_{V,\mathrm{star}}). We select a sample of 163 galaxies between 1.36z1.51.36\le{}z\le1.5 with Hα\alpha signal-to-noise ratio 5\ge5 and measure Balmer decrements from stacked spectra to calculate AV,HIIA_{V,\mathrm{HII}}. First, we stack spectra in bins of AV,starA_{V,\mathrm{star}}, and find that AV,HII=1.86AV,starA_{V,\mathrm{HII}}=1.86\,A_{V,\mathrm{star}}, with a significance of σ=1.7\sigma=1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (logSSFR\log\,\mathrm{SSFR}), star formation rate (logSFR\log\,\mathrm{SFR}), and stellar mass (logM\log{}M_*). We find that on average AV,HIIA_{V,\mathrm{HII}} increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα\alpha SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.Comment: Accepted for publication in the Astrophysical Journal (13 pages, 9 figures
    corecore