1,620 research outputs found

    Coastal subsidence in Oregon, USA, during the Giant Cascadia earthquake of AD 1700

    Get PDF
    Quantitative estimates of land-level change during the giant AD 1700 Cascadia earthquake along the Oregon coast are inferred from relative sea-level changes reconstructed from fossil foraminiferal assemblages preserved within the stratigraphic record. A transfer function, based upon a regional training set of modern sediment samples from Oregon estuaries, is calibrated to fossil assemblages in sequences of samples across buried peat-mud and peat-sand contacts marking the AD 1700 earthquake. Reconstructions of sample elevations with sample-specific errors estimate the amount of coastal subsidence during the earthquake at six sites along 400 km of coast. The elevation estimates are supported by lithological, carbon isotope, and faunal tidal zonation data. Coseismic subsidence at Nehalem River, Nestucca River, Salmon River, Alsea Bay, Siuslaw River and South Slough varies between 0.18 m and 0.85 m with errors between 0.18 m and 0.32 m. These subsidence estimates are more precise, consistent, and generally lower than previous semi-quantitative estimates. Following earlier comparisons of semi-quantitative subsidence estimates with elastic dislocation models of megathrust rupture during great earthquakes, our lower estimates for central and northern Oregon are consistent with modeled rates of strain accumulation and amounts of slip on the subduction megathrust, and thus, with a magnitude of 9 for the AD 1700 earthquake

    Oxidative Addition of Aryl Electrophiles to a Prototypical Nickel(0) Complex: Mechanism and Structure/Reactivity Relationships

    Get PDF
    Detailed kinetic studies of the reaction of a model Ni-0 complex with a range of aryl electrophiles have been conducted. The reactions proceed via a fast ligand exchange pre-equilibrium, followed by oxidative addition to produce either [(NiX)-X-I(dppf)] (and biaryl) or [Ni-II(Ar)X(dppf)]; the ortho substituent of the aryl halide determines selectivity between these possibilities. A reactivity scale is presented in which a range of substrates is quantitatively ranked in order of the rate at which they undergo oxidative addition. The rate of oxidative addition is loosely correlated to conversion in prototypical cross-coupling reactions. Substrates that lead to Ni-I products in kinetic experiments conditions. produce more homocoupling products under catalytic conditions

    Enhancement of Rabi Splitting in a Microcavity with an Embedded Superlattice

    Full text link
    We have observed a large coupling between the excitonic and photonic modes of an AlAs/AlGaAs microcavity filled with an 84-({\rm {\AA}})/20({\rm {\AA}}) GaAs/AlGaAs superlattice. Reflectivity measurements on the coupled cavity-superlattice system in the presence of a moderate electric field yielded a Rabi splitting of 9.5 meV at T = 238 K. This splitting is almost 50% larger than that found in comparable microcavities with quantum wells placed at the antinodes only. We explain the enhancement by the larger density of optical absorbers in the superlattice, combined with the quasi-two-dimensional binding energy of field-localized excitons.Comment: 5 pages, 4 figures, submitted to PR

    Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis

    Get PDF
    Approximately 40% of treatments of chronic and recurrent osteomyelitis fail in part due to bacterial persistence. Staphylococcus aureus, the predominant pathogen in human osteomyelitis, is known to persist by phenotypic adaptation as small-colony variants (SCVs) and by formation of intracellular reservoirs, including those in major bone cell types, reducing susceptibility to antibiotics. Intracellular infections with S. aureus are difficult to treat; however, there are no evidence-based clinical guidelines addressing these infections in osteomyelitis. We conducted a systematic review of the literature to determine the demonstrated efficacy of all antibiotics against intracellular S. aureus relevant to osteomyelitis, including protein biosynthesis inhibitors (lincosamides, streptogramins, macrolides, oxazolidines, tetracyclines, fusidic acid, and aminoglycosides), enzyme inhibitors (fluoroquinolones and ansamycines), and cell wall inhibitors (beta-lactam inhibitors, glycopeptides, fosfomycin, and lipopeptides). The PubMed and Embase databases were screened for articles related to intracellular S. aureus infections that compared the effectiveness of multiple antibiotics or a single antibiotic together with another treatment, which resulted in 34 full-text articles fitting the inclusion criteria. The combined findings of these studies were largely inconclusive, most likely due to the plethora of methodologies utilized. Therefore, the reported findings in the context of the models employed and possible solutions for improved understanding are explored here. While rifampicin, oritavancin, linezolid, moxifloxacin and oxacillin were identified as the most effective potential intracellular treatments, the scientific evidence for these is still relatively weak. We advocate for more standardized research on determining the intracellular effectiveness of antibiotics in S. aureus osteomyelitis to improve treatments and patient outcomes.Anja R. Zelmer, Renjy Nelson, Katharina Richter, and Gerald J. Atkin

    Virus shapes and buckling transitions in spherical shells

    Full text link
    We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells, produces excellent one parameter fits in real space to the full three-dimensional shape of large spherical viruses. The faceted shape depends only on the dimensionless Foppl-von Karman number \gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the protein shell, \kappa is its bending rigidity and R is the mean virus radius. The shape can be parameterized more quantitatively in terms of a spherical harmonic expansion. We also investigate elastic shell theory for extremely large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure

    Population dynamics in compressible flows

    Full text link
    Organisms often grow, migrate and compete in liquid environments, as well as on solid surfaces. However, relatively little is known about what happens when competing species are mixed and compressed by fluid turbulence. In these lectures we review our recent work on population dynamics and population genetics in compressible velocity fields of one and two dimensions. We discuss why compressible turbulence is relevant for population dynamics in the ocean and we consider cases both where the velocity field is turbulent and when it is static. Furthermore, we investigate populations in terms of a continuos density field and when the populations are treated via discrete particles. In the last case we focus on the competition and fixation of one species compared to anotherComment: 16 pages, talk delivered at the Geilo Winter School 201

    Evidence for hadronic deconfinement in pˉ\bar{p}-p collisions at 1.8 TeV

    Get PDF
    We have measured deconfined hadronic volumes, 4.4<V<13.04.4 < V < 13.0 fm3^{3}, produced by a one dimensional (1D) expansion. These volumes are directly proportional to the charged particle pseudorapidity densities 6.75<dNc/dη<20.26.75 < dN_{c}/d\eta < 20.2. The hadronization temperature is T=179.5±5T = 179.5 \pm 5 (syst) MeV. Using Bjorken's 1D model,the hadronization energy density is ϵF=1.10±0.26\epsilon_{F} = 1.10 \pm 0.26 (stat) GeV/fm3^{3} corresponding to an excitation of 24.8±6.224.8 \pm 6.2 (stat) quark-gluon degrees of freedom.Comment: 15 pages, 3 figures, 2 table

    Population Dynamics and Non-Hermitian Localization

    Full text link
    We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schroedinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influenced by a simple square well growth profile. Results from discrete lattice growth models in both one and two dimensions are presented. A set of similarity transformations which lead to exact results for the spectrum and winding numbers of eigenfunctions for random growth rates in one dimension is described in detail. We discuss the influence of boundary conditions, and argue that periodic boundary conditions lead to results which are in fact typical of a broad class of growth problems with convection.Comment: 19 pages, 11 figure
    • …
    corecore